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 ABSTRACT 

Background 

Traditionally, the clinical response to allergen exposure in subjects with atopic 

diseases, including atopic asthma and allergic rhinitis, has been thought to be 

mediated by a Th2-type cytokine profile. Conversely, the lack of clinical 

response to allergen in non-atopic subjects has been thought to reflect either 

no immunological activity or a Th1-type response. Recent murine models 

have suggested a more complex interaction between Th1 and Th2 responses, 

with a critical functional role for IL-10 secreting regulatory T cells in 

suppressing allergic airway inflammation. There is a paucity of corresponding 

data regarding human airway cells. 

Objectives 

The aims of this thesis were to study the ex vivo allergen-specific cytokine 

responses of cells derived from human nasal polyps. We hypothesised that 

IL-10 producing regulatory T cells have a critical functional role in suppressing 

allergen-specific Th2 and/or Th1 responses in respiratory cells derived from 

human nasal polyps.   

Materials and methods 

Nasal polyp tissue was harvested from 20 non-smoking adults with nasal 

polyposis requiring surgery. Atopic status was determined by skin prick 

testing. Following isolation by matrix proteolysis, cell suspensions were 

incubated with allergen (cat, grass or house dust mite) for 6 days. Cytokine 

production was determined by cytometric bead array. 

Results 

Allergen stimulation of human nasal polyp cell suspensions significantly 

enhanced production of IL-10, but not IL-5 or IFN-γ. Under the same 

conditions, neutralisation of IL-10 significantly increased allergen-specific IL-5, 
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IFN-γ and TNF-α production. Cell depletion experiments demonstrated the 

observed IL-10 was either derived from T cells or via a T cell dependent 

process. Subsequent Intracellular cytokine staining experiments 

demonstrated T cells immunoreactive for IL-10, but not IL-2 or IL-13. 

Conclusions 

Allergen-specific regulatory T cells play a critical functional role in human 

respiratory tissue derived from nasal polyps by regulating abnormal Th2 and 

Th1 responses to common inhaled aeroallergens, through mechanisms 

dependent on allergen-specific production of IL-10. 
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1 INTRODUCTION 

1.1 Allergic Rhinitis 

1.1.1 Definition 

Allergic rhinitis (AR) is clinically defined as allergen-associated, IgE-mediated 

inflammation of the nasal membranes (1, 2). It is characterised by symptoms 

including rhinorrhoea, nasal congestion, sneezing and nasal/ palatal itching, 

along with postnasal drainage and ocular symptoms (itchy, watery eyes) (1).  

1.1.2 Epidemiology 

The prevalence of AR is between 10-30% of adults and up to 40% of children 

(3-5), particularly those between the ages of 6-14 years (1, 6, 7). These 

figures are based on physician-diagnosis. The actual prevalence may be 

greater as up to one third of individuals with AR never see a physician, 

preferring to self-medicate or borrow medications from friends and family (8). 

AR has been identified as one of the top ten reasons for visiting a primary 

care clinic (9). 

Both the incidence and severity of AR appears to be increasing in modern 

urban areas (6, 10). European studies report an increase in prevalence of up 

to 3.5% per decade (11).  Possible contributing factors for this change include 

the effects of environmental and lifestyle changes, such as air pollution, 

indoor environment, affluence, exposure to new allergens and a 

psychologically stressful lifestyle (10, 12). 

Increases in the incidence of childhood AR in “Westernised” urban areas have 

been attributed to the “Hygiene Hypothesis” which correlates a modern urban 

upbringing with a low exposure to microbial fragments (12, 13). 
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1.1.2.1 Risk Factors 

AR is related to other atopic diseases, including asthma and eczema (1).  

Proposed risk factors include genetics and family history, early life risk factors, 

ethnicity, allergen exposure, rural-urban differences, and smoking (2). 

There appears to be a genetic component with the most well-established risk 

factor for AR being a family history of allergy, especially AR (1, 2). 

Outdoor allergens appear to pose the greatest risk for seasonal rhinitis 

compared to indoor allergens (1, 2).  Early exposure to allergens may be 

protective, however, this hypothesis needs further testing (1). 

AR is more common in urban areas.  This may be due to the higher 

concentration of pollutants in urban areas, which are thought to increase the 

allergenic potency of pollens (1).  Other hypotheses relate to early protective 

allergen exposure in rural areas (2). 

Existing literature on the influence of early life risk factors (such as young 

maternal age) is not clear. Evidence regarding ethnicity and smoking is 

contradictory and further research into these areas is required (1, 2). 

1.1.3 Pathophysiology and Aetiology 

1.1.3.1 Sensitisation 

The initial sensitisation process in AR is known as the primary immune 

response. Subsequent and ongoing reactions to allergen are known as the 

secondary immune response. 

Primary Immune Response 

The primary immune response generally occurs in childhood, although 

occupational and other forms of AR can result from sensitisation later in life. 

The primary immune response is mediated by allergen interaction with 

antigen presenting cells (APC), of which the most potent is the dendritic cell 
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(DC) (14). The typical result of the interaction between harmless antigen and 

DCs is tolerance, whilst the result of the interaction between pathogenic 

antigens and DCs is immunity. However, under certain circumstances, 

harmless antigens may trigger a T helper 2 type (Th2) response, resulting in 

allergy. A Th2-type immune response will be mounted if DCs reach full 

maturity during contact with an antigen. This can occur in the presence of 

concomitant inflammatory stimuli such as lipopolysaccharide (LPS) or 

respiratory infections. Recent evidence suggests that mast cells may play a 

role in initiating DC maturation in the presence of endotoxins by releasing 

tumour necrosis factor alpha (TNF-α) (15, 16). DC maturation may also occur 

through contact with certain antigens that have the capacity to induce DC 

maturation directly. Der p 1, which is derived from the house dust mite 

Dermatophagoides pteronyssinus, directly induces DC maturation through 

enzymatic activity, leading to a Th2-type allergic response (17, 18).  

Once primary sensitisation has occurred, subsequent allergen exposure will 

lead to secondary immune responses. These comprise the typical episodes of 

AR seen clinically. 

Secondary Immune Response 

The secondary immune response of AR has both early and late phase 

components. 

Secondary Immune Response – Early Phase 

The early phase commences within minutes of allergen exposure and 

subsides within 60 minutes (19). It is characterized by sneezing, rhinorrhoea, 

nasal obstruction and pruritis (20). Cross-linking of IgE by allergen triggers a 

complex local and systemic cascade of events. Activation of mast cells and 

basophils results in the immediate release of preformed histamine and 

granule proteins such as tryptase. Leukotrienes are released through 

activation of membrane phospholipids. Cytokines are released pre-formed 

from mast cells and are produced by T cells. These include Th2-type 
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cytokines such as Interleukin-4 (IL-4), IL-5 and IL-13 and inflammatory 

cytokines such as IL-6, IL-8, IL-10 and TNF-α (21-23). 

Secondary Immune Response – Late Phase 

The late phase reaction typically occurs 4 to 5 hours following allergen 

exposure in around 30-40% of patients (24). It peaks at 6 to 8 hours and 

subsides 12 to 24 hours after allergen challenge (19). Nasal obstruction is the 

main symptom. Inflammatory cells, such as eosinophils, are recruited and 

activated by mediators from the early phase reaction along with other 

cytokines and chemokines (25), particularly IL-5 (26). 

During the secondary immune response, antigen presentation to T-cells can 

be performed by both DCs and any other cell expressing the major 

histocompatibility complex (MHC) class II (1). 

Non IgE mediated 

Recent evidence has demonstrated that certain allergens are able to bypass 

immunoglobulin E (IgE) binding and activate cells directly via the “innate” 

immune response (27). House dust mite allergens have been shown to 

activate epithelial cells in vitro (28) inducing pro-inflammatory, pro-Th2 

cytokine and chemokine release (29, 30). The relative importance of this non-

IgE mediated mechanism is yet to be determined. 

1.1.4 Classification 

1.1.4.1 Traditional classification 

AR has traditionally been classified into seasonal and perennial variants (2). 

Seasonal AR is associated with allergens that are present in greater 

quantities during defined periods of the year. Typically, these include outdoor 

allergens such as grass and tree pollens. Perennial AR occurs throughout the 

year and is associated with ubiquitous year-round allergens such as house 

dust mite allergens, indoor moulds, cockroaches and animal dander (1, 2). 
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Due to the non-specific nature of its symptoms, perennial AR can often be 

difficult to identify clearly. It may occur simultaneously or be confused with 

chronic rhinosinusitis, recurring respiratory infection, nasal polyposis and non-

allergic vasomotor rhinitis. Isolated seasonal AR, however, is more readily 

identified (10). 

1.1.4.2 ARIA classification 

Despite this traditional classification system, in practice, most patients with AR 

have been demonstrated to have a mixed aetiology, involving sensitisation to 

more than one allergen (31, 32). Indeed, a European study demonstrated that 

only around 20% of all patients are sensitised to a single trigger, compared 

with around 40% of patients sensitised to at least five triggers and 10–15% of 

patients sensitised to two to four triggers (33). Furthermore, many individuals 

sensitised to seasonal allergens exhibit persistent symptoms year round, 

whilst many other individuals sensitised to perennial allergens experience 

symptoms only intermittently (31, 32).  As a consequence, the Allergic Rhinitis 

and its Impact on Asthma group (ARIA) proposed a new classification system 

in 2001, dividing patients into intermittent and persistent groups along with 

mild and moderate-severe variants (Figure 1.1.1) (1). This classification 

system has been validated through cross-sectional and multi-centre studies 

(31, 33, 34). 
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Figure 1.1.1: ARIA classification of allergic rhinitis (1) 

Intermittent 

Symptoms are present: 

 Less than 4 days a week 

 OR, for less than 4 weeks 

Persistent 

Symptoms are present: 

 More than 4 days a week 

 AND, for more than 4 weeks 

 

Mild 

None of the following are present: 

 Sleep disturbance 

 Impairment of daily activities, leisure and/or sport 

 Impairment of school or work 

 Troublesome symptoms 

Moderate-Severe 

One or more of the following are present: 

 Sleep disturbance 

 Impairment of daily activities, leisure and/or sport 

 Impairment of school or work 

 Troublesome symptoms 
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1.1.5 Clinical Features 

AR is characterised by nasal symptoms (including rhinorrhoea, sneezing, 

nasal blockage, itching, post-nasal drip) and ocular symptoms (itchy, watery 

eyes) following allergen exposure (2). Symptoms are spontaneously 

reversible or reversible with treatment (2).  

1.1.6 Impact and burden 

AR has been demonstrated to have significant morbidity, affecting quality of 

life, productivity at work, concentration, learning ability (in children), sleep, 

mood and daily activities (2, 35-38). AR is associated with other conditions 

including sinusitis, asthma and otitis media (1, 39-42). A 1996 study estimated 

the total annual cost of AR in the United States to be $US6 billion (43). 

1.1.7 Differentiation from non-allergic rhinitis 

Non-allergic or “vasomotor” rhinitis (NAR), despite resulting in similar 

symptoms as AR, is a markedly different disease. As in AR, NAR is 

characterised by nasal congestion and rhinorrhoea. Associated symptoms 

can include post nasal drip, throat clearing, cough, eustachian tube 

dysfunction, sneezing, hypersomnia, facial pressure or headache and, 

generally, no nasal, pharyngeal or ocular itching (44). 

Diagnosis is based upon symptoms and the absence of specific IgE 

responses by skin, serologic, or entopy (nasal mucosal challenge) testing. 

The pathophysiology of NAR is poorly understood. NAR is thought to include 

several conditions, with the key area of interest involving 

hyperresponsiveness of C-fibre sensory nerves without nasal mucosa 

inflammatory changes (45). 
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1.2 Asthma 

1.2.1 Definition 

The Global Initiative for Asthma (GINA) guidelines define asthma as a chronic 

inflammatory disorder of the airways in which many cells and cellular 

elements play a role (46). The airway inflammation in asthma is associated 

with bronchial hyperresponsiveness that leads to recurrent episodes of 

wheezing, breathlessness, chest tightness and coughing (46, 47).   

1.2.2 Epidemiology 

The prevalence of asthma can vary depending upon geographical location. 

However, it is estimated that asthma affects 300 million people worldwide 

(48). Along with AR, the overall prevalence of asthma appears to be 

increasing in western nations, particularly in urban areas. In children, asthma 

prevalence and severity has increased over recent decades (3). 

Asthma prevalence in Australia varies between 14 to 16% in children and 10 

to 12% of adults (47).  

1.2.2.1 Risk factors 

Risk factors include family history, atopy and AR (49), early respiratory viral 

infections (50), prematurity, air pollution, exposure to cigarette smoke (51) 

and obesity (52). 

1.2.3 Pathophysiology 

The 3 hallmarks of asthma are airway inflammation, reversible airway 

obstruction and bronchial hyperreactivity (53). Chronic inflammation of the 

bronchial mucosa leads to mucosal oedema, vasodilation, cellular infiltration, 

epithelial injury, smooth muscle and mucous gland hypertrophy and 

eventually, basement membrane thickening and fibrosis (53). 

Mast cells are a key feature of asthma and are located in the airway tissue 

with some evidence that they may infiltrate airway smooth muscle (54). Cells 
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that infiltrate the airway tissue and enter the lumen are detectable in induced 

sputum and have recently been used to describe varying inflammatory 

phenotypes in asthma (55). Four distinct phenotypes have been identified: 

eosinophilic, neutrophilic, mixed inflammatory and paucigranulocytic (55). 

1.2.4 Clinical Features 

Clinically, asthma is associated with symptoms of wheeze, chest tightness, 

shortness of breath and cough (47).  Symptoms are typically recurrent or 

seasonal, worse at night or in the early morning, have obvious triggers and 

are relieved by short acting bronchodilators (47). 

Objective measures of airway hyperresponsiveness, including spirometry and 

formal lung function testing are useful in diagnosing and monitoring the 

disease. 

1.2.5 Impact and burden 

Asthma represents a considerable burden in terms of morbidity and economic 

impact. Ongoing care requires frequent monitoring and acute exacerbations 

account for numerous emergency department visits. In the United States, in 

2007, the total incremental cost of asthma to society was estimated at $US56 

billion, with productivity losses due to morbidity accounting for $US3.8 billion 

and productivity losses due to mortality accounting for $US2.1 billion (56). 

Mortality rates appear to be declining from the high rates seen in the 1980’s. 

However, as deaths from asthma are largely preventable, the mortality rate is 

still concerning at around 1.5 deaths per annum for every 100,000 individuals 

in the United States (57). 

1.3 The Unified Airway 

1.3.1 Definition 

Epidemiological evidence and patterns of disease manifestation implicate a 

link between AR and atopic asthma, suggesting that both conditions are 
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manifestations of a common pathological process. This has led to the concept 

of the “Unified airway” (58). 

1.3.2 Allergic Rhinitis is a risk factor for Asthma 

Numerous studies have found a correlation between rhinitis (allergic and non-

allergic) and asthma. Around one third of patients with rhinitis (AR and NAR) 

will have concurrent asthma (59). In AR, this figure increases to around 40% 

(59). Long-term follow-up studies have demonstrated that a high proportion of 

patients with rhinitis alone will subsequently proceed to develop asthma over 

time (49, 60-62). In fact, rhinitis is considered as an independent risk factor for 

the development of asthma (49, 63).  

AR is a predictor of bronchial hyperreactivity, even in patients without a 

diagnosis of asthma (64). In patients with rhinitis, positive skin prick tests to 

inhalant allergen, particularly house dust mite (HDM), is a significant risk 

factor for asthma (65). 

1.3.3 Asthma is a risk factor for Allergic Rhinitis 

Conversely, it has been reported that symptoms of AR are experienced by 

between 30-99% of persons with asthma (66). 

1.3.4 Asthma is associated with nasal eosinophilia 

Patients with asthma demonstrate evidence of increased nasal eosinophilia, 

regardless of whether they exhibit clinical rhinitis (62). This correlates with the 

presence of bronchial eosinophilia in asthma (62). 

Nasal eosinophilia has been demonstrated to be predictive of the presence of 

airway hyperresponsiveness in subjects with persistent perennial rhinitis 

suggesting that these subjects may be developing asthma pathophysiology 

(67). 
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1.3.5 Treating Allergic Rhinitis improves Asthma  

In children, early recognition of AR and treatment with specific immunotherapy 

has been shown to decrease the severity of concomitant asthma and to 

reduce the risk of subsequent asthma in those without the condition (68). 

There have been a number of studies that demonstrate the efficacy of the 

simultaneous treatment of persistent AR and asthma using intranasal 

corticosteroids (69-71). This suggests that treating the upper airway may have 

indirect anti-inflammatory benefits on the lower airways, possibly by reducing 

cell trafficking to the lower airways from allergic stimuli that enter the nasal 

passages. A recent study in children with asthma and intermittent AR 

demonstrated improvements in exercise-induced bronchoconstriction through 

the use of intranasal corticosteroids alone, without orally inhaled 

corticosteroids (72, 73). 

 

The progress of both conditions tends to be linked, with improvement in one 

condition leading to resolution in the other and worsening in one condition 

resulting in persistence of the other (74-82).  

1.3.6 Common pathophysiological process 

Overall, the pathophysiological processes occurring in the upper and lower 

airways in both conditions are considered to be local manifestations of a 

generalized inflammatory respiratory disorder, in which eosinophillic infiltration 

plays a significant role (83, 84). 

1.3.7 Influence of nasal obstruction upon the lower airway 

An additional, independent link between upper and lower airway disease is 

that patients with nasal obstruction will breathe orally rather than nasally. The 

consequent loss of heat and humidification of inspired air may exacerbate 

bronchial hyperresponsiveness (85). 
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1.4 Immune system in AR and Asthma 

1.4.1 T cells 

T cells or T lymphocytes, mature in the thymus and are identified by the 

presence of the T cell receptor (TCR). T cells play a key role in co-ordinating 

adaptive immune responses to pathogens, self-antigens and environmental 

antigens. T cells are broadly classified into two major classes depending on 

whether they express the CD4 or CD8 antigen on their surface. Cells in the 

CD4+ “Helper” class recognise peptide fragments bound to MHC type II 

antigens. Upon activation, these cells secrete cytokines that promote antibody 

production and the activation of effector cells and mechanisms associated 

with host defence (86).  Cells in the CD8+ “Cytotoxic” class recognise peptide 

fragments bound to MHC type I antigens. They function to destroy tumour 

cells and cells infected by viruses. 

1.4.1.1 Th1 and Th2 cells 

CD4+ T cells are traditionally further divided into Th1 (T helper 1) and Th2 (T 

helper 2) subsets. This classification scheme is based on the cytokine profile 

associated with each cell (87). Th1 cells are characterised by their production 

of interferon–γ (IFN-γ) and Tumour necrosis factor-alpha (TNF-α) and are 

associated with protection against intracellular bacteria, as well as 

autoimmune disease (88). Th2 cells produce the cytokines IL4, IL5, IL9 and 

IL13 (89) which promote humoral responses and antibody production and are 

important for defence against helminths. Th2 responses are also associated 

with allergic disease. 

1.4.1.2 Th1 vs Th2 differentiation 

Th1 and Th2 subsets are formed through the maturation of naïve Th0 cells, 

following their interaction with antigenic fragments on antigen presenting cells 

(APCs). The decision as to which subset a naïve Th0 cell will enter is 

determined by several factors including the allergenicity of the fragments, the 
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cells present nearby and the chemical microenvironment surrounding the cells 

(87). 

1.4.1.3 CD4+ T cell – antigen interaction 

CD4+ T cell interactions with antigen commence when a T cell binds to 

processed antigenic fragments attached to MHC class II molecules on the 

surface of an APC, of which DCs are the most important. Depending on the 

presence or absence of specific co-stimulatory molecules and the presence of 

specific chemical signals, one of several scenarios may arise: 

 T cell maturation – Th1 pathway 

 T cell maturation – Th2 pathway 

 Tolerance 

 Other pathways – discussed below 

Th1 Pathway 

Initiation of a Th1 maturation pathway appears to be prompted by the DC 

expressing IL-12. IL-12 also strongly suppresses the Th2 pathway. IL-12 

production is prompted by immature DCs interacting with microbial fragments 

through Toll-like receptors (TLR) that recognize pathogen-associated 

molecular patterns (PAMPs) (90) 

Th2 pathway 

The Th2 maturation pathway is not as well understood. The trigger for the 

development of the Th2 maturation pathway appears to be the DC reaching 

full maturity during contact with an antigen. This may occur when DC-antigen 

contact is accompanied by an inflammatory stimulus, such as concomitant 

environmental lipopolysaccharide (LPS) exposure (15).  IL-4 appears to play a 

pivotal role but the signalling and interactions between the DC and the 

maturing T cell are less clear. Thymic stromal lymphopoietin (TSLP) is an IL-
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7-like cytokine, produced by epithelial cells, that has been suggested as 

playing an important role in the process (91).  

Tolerance 

An antigen that does not result in the activation of an immune response is 

said to induce tolerance. Tolerance is the usual outcome of the inhalation of 

harmless antigen. In order to induce tolerance, the antigen must only 

stimulate the production of limited numbers of effector T cells (Th1/ Th2) with 

increased numbers of T regulatory (Treg) cells. This typically occurs where 

the DC only achieves partial maturity following antigen-DC interaction (92). 

1.4.1.4 Costimulatory molecules 

Following binding of a CD4+ T cell to antigen fragments attached to the MHC 

class II molecule on the surface of an APC, for the T cell to become activated 

requires additional binding of co-stimulatory molecules on the APC surface 

(93). Such co-stimulatory molecules can influence T cell activation, maturation 

and function. Co-stimulatory molecules thought to play a role in T cell 

activation include Inducible costimulator (ICOS) and B7-related protein-1 

(B7RP-1), CD30, OX40, 4-1BB, CD80, CD86 and CD28 (92). 

The molecules most involved in the Th2 pathway include ICOS, CD30, OX40 

and possibly 4-1BB (94, 95). ICOS in particular contributes to B cell antibody 

production, particularly IgE, and is essential for the creation of memory B cells 

(96). Despite this, ICOS has a role in the creation by T cells of the anti-

inflammatory cytokine IL-10. Other important co-stimulatory molecules include 

CD80 and CD86 and PDL-1, which is a negative co-stimulator (14, 97).   

1.4.1.5 Memory T cells 

Memory T cells are a further subset of T cells. They are identified by the 

presence of the CD45RO isotype, whereas non-memory naïve cells express 

CD45RA. Memory T cells are subdivided into central and effector memory 

cells based on the presence of the chemokine receptor CCR7.  Central 

memory T cells (TCM) express CCR7 and migrate to secondary lymphoid 
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tissues where they proliferate upon encountering antigen, giving rise to 

effector T cells. Effector memory T cells (TEM), lacking CCR7, migrate 

directly to inflamed tissues and respond rapidly upon activation (98). 

1.4.1.6 Regulatory T cells (Treg)  

Traditional Th1/Th2 model 

Under the traditional Th1/Th2 model, it was assumed that each pathway was 

mutually exclusive and that a strong response in one pathway suppressed the 

other (87).  

Traditional model and the “Hygeine hypothesis” 

The finding that allergic diseases have been increasing in developed 

countries in recent decades led to the formulation of the “hygiene hypothesis” 

(99). This theory suggested that a reduction in exposure to microbial 

fragments in childhood, which normally led to strong Th1 responses, was 

resulting in increased Th2 responses (99).  

However, there are several problems with this theory, including the 

observations that Th1-type diseases such as inflammatory bowel disease are 

also increasing (100, 101), a Th2 response to helminth infection appears to 

prevent allergy (102, 103) and that allergen-specific Th1 responses do not 

appear to have a significant role in suppressing allergy in asthma (104). 

T regulatory cells 

An alternative explanation centres around a more recently described T cell 

subset, the T regulatory (Treg ) cell, which acts to suppress both Th1 and Th2 

subsets through the secretion of inhibitory cytokines and direct cell contact. 

Disturbance of Treg cells, which may normally be induced by microbial 

fragments, results in a loss of Th1 and Th2 control resulting in inappropriate 

immune responses (105). 



1 Introduction 

 16 

Classification of T regulatory cells 

Treg cells are broadly classified into “natural” and “adaptive” categories.  

Natural Tregs (CD4+ CD25+) (nTreg) are found in all healthy individuals, 

express the protein forkhead box P3 (FoxP3) on their cell surface and are 

selected in the thymus during normal immune system development. They 

appear to have a role in the promotion of tolerance to self-antigens and also in 

immune tolerance to external antigens (106).  A recent study has 

demonstrated two distinct nTreg subtypes: ICOS+ nTregs, which express 

both IL-10 and transforming growth factor beta (TGF-β) and ICOS- nTregs, 

which express TGF-β alone (107). 

Adaptive T regs, also known as “inducible”, include both Foxp3+ and Foxp3- 

populations (108, 109). They arise subsequent to specific antigen stimulation 

and inhibit T cell responses through the production of inhibitory cytokines, 

particularly IL-10 and TGF-β (110). Adaptive Tregs that secrete IL-10 are 

known as Type 1, Tr1 or IL-10-T. Those that secrete TGF-β are sometimes 

referred to as Th3 cells. Suppression is also achieved through cell surface 

molecules including cytotoxic T-lymphocyte antigen 4 (CTLA-4) (111) and 

programmed death-1 (PD-1) (112, 113) 

Recently, several non-CD4+ T regulatory cell subsets have been identified, 

including CD8+ T cells, γδ T cells, DCs, natural killer cells and IL-10 producing 

B cells (114). 

Balance of Treg/ Th2 cells in health and disease 

Allergen-specific inducible Treg cells are defined by their ability to produce 

high levels of IL-10 and TGF-β (115) in response to specific allergens.  In 

healthy individuals Tr1 cells outnumber Th2 cells specific for common 

environmental allergens (115). In allergic individuals, this balance appears to 

be reversed in favour of allergen-specific Th2 cells (115, 116). 
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Disorders of Treg function 

IPEX syndrome (Immune dysregulation, polyendocrinopathy and enteropathy, 

X-linked) is a condition where sufferers experience severe allergic disease 

including food allergies, eczema, eosinophilia and raised serum IgE (117). It is 

due to a mutation in the gene encoding for FoxP3, a key marker for natural 

Tregs. 

Treg numbers and activity are influenced by successful therapeutic 

interventions 

The successful use of allergen-specific immunotherapy can result in the 

subsequent production of allergen-specific Treg1 cells that suppress Th2 and 

Th1 proliferation, along with their cytokine products (115, 118).  

The successful use of inhaled or systemic glucocorticoids in asthmatics is 

associated with increased Foxp3 and other Treg cell markers in the peripheral 

blood (115, 119-121). Similar results have been demonstrated in the nasal 

tissues of patients with AR (122). 

Treg function 

Tregs function to suppress allergen-induced specific T-cell activation (114), as 

well as DCs and allergic inflammatory effector cells including mast cells, 

eosinophils and basophils (123). Tregs influence immunoglobulin through the 

suppression of IgE production as well as class-switching to non-inflammatory 

IgG4 and IgA (115, 124). 

Natural Tregs act largely through direct cell-to-cell contact whereas inducible 

Tregs act primarily through the expression of regulatory cytokines, although 

there is overlap in both subsets (115). Tregs interact directly with DCs to 

prevent DC maturation (125). They also express CTLA-4, which binds 

CD80/86 with a higher affinity than CD28, thus inhibiting T cell activation 

(126). Inducible Treg function is largely instituted through the actions of IL-10 

and TGF-β (114). Natural Treg function is not always dependent on IL-10 
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(106). This finding may be explained by the recent discovery of the distinct 

ICOS- nTreg subset, which does not act through IL-10 (107). 

Treg-generated IL-10 regulatory actions 

IL-10 regulates Th2 responses by inhibiting the production of pro-

inflammatory cytokines, and through the inhibition of APC (mostly DC), mast 

cell and eosinophil function along with T cell activation (Figure 1.4.1). IL-10 

appears to inhibit only those T-cells that are stimulated by low numbers of 

triggered T cell receptors and are dependent on CD28 co-stimulation (115). 

IL-10 inhibits the CD28 signalling pathway by blocking CD28 tyrosine 

phosphorylation, preventing the binding of phosphatidylinositol 3-kinase p85 

(115).  Furthermore, IL-10 shifts antibody production from IgE towards non-

inflammatory IgG4 (115).  TGF-β plays a similar role in shifting antibody 

production towards IgA (115). 

The role of IL-10 has been demonstrated to be critical within murine mucosal 

surfaces, such as the lung (127-129) and gut (130), in order to suppress 

allergic responses. However, IL-10 is not a pre-requisite for suppression of 

systemic autoimmunity in the peripheral circulation (106). 



1 Introduction 

 19 

 

Figure 1.4.1 (From Hawrylowicz  et al) Control of allergic airway disease by regulatory T cells. 

Allergic airway disease is caused by inappropriate Th2-driven immune responses to “harmless” 

allergens. CD4+CD25+ and IL-10–producing T reg cells can regulate allergic sensitisation in vivo 

through inhibitory effects on Th2 cells or on dendritic cells (DCs) in the respiratory mucosa. T reg 

cells can also induce the production of the immunosuppressive cytokine IL-10 by host T cells 

(not shown). In turn, DCs can produce immunomodulatory cytokines such as IL-6, which has 

been shown to inhibit CD4+CD25+ T reg cell function, and IL-10, which has been shown to 

induce IL-10–producing T reg cells (110). 

IL-10 levels in health and disease 

IL-10 levels are increased in health and reduce in proportion with disease 

severity. Treatments that improve disease symptoms, such as glucocorticoids 

and allergen immunotherapy are associated with increased IL-10 levels in 

nasal tissue (122) and in the peripheral blood (131, 132) of patients who 

responded to treatment (115). 
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Difficulties with Treg identification 

The study of Tregs has been hampered by the lack of a unique marker. 

Foxp3+ occurs in nTregs, but only in certain inducible Tregs. Furthermore, 

Foxp3 is intracellular, limiting its usefulness in isolating Treg cells 

experimentally (133). CD25 is thought to be crucial for the regulatory subset, 

but in vitro suppressive activity in humans has only been demonstrated with 

the highest levels of CD25 (CD4+CD25high ) (134). Furthermore, some 

Foxp3+ Tcells are CD25- (133). Other markers, such as CTLA-4 and GITR, 

are not specific to Tregs (135, 136). CD127 has been proposed as a marker 

for non-Treg T cells (133). 

1.4.1.7 Th17 

A subset of T cells outside the traditional Th1/ Th2 model, that produce IL-17 

and are known as Th17 cells, has recently been described (137, 138). They 

appear to have roles in neutrophil recruitment and activation (139) along with 

allergy and autoimmune disease (140, 141). Animal models appear to 

suggest that these cells may confer resistance to corticosteroids (142). Th17 

cells and their associated cytokines, IL-1, IL-6 and IL-17, have been 

demonstrated in neutrophil-predominant NP patients, particularly from South-

east Asian populations (143). 

1.4.1.8 Th17/Treg balance 

There is some evidence that Th17 cells and Treg cells have reciprocal 

functions. The growth factor for Treg cells, IL-2, inhibits Th17 differentiation 

and vice versa for the Th17 growth factor IL-25 (144). Furthermore, the 

transcription factor for natural Treg cells, Foxp3, can bind and inhibit the Th17 

transcription factor, retinoid orphan nuclear receptor (ROR) (145, 146) 

1.4.1.9 iNKT 

A class of T-cells that express an invariant T cell receptor along with specific 

natural killer markers are known as iNKT cells (147). These cells may be 

capable of rapidly producing large quantities of Th2 type cytokines (148). 
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Recent studies have suggested that these cells may contribute to the roles 

previously thought to be played exclusively by Th2 cells in asthma (149), 

although other studies have found otherwise (150, 151). 

1.4.2 Antigen presenting cells 

Antigen presenting cells (APC) process foreign antigens and present the 

processed peptide fragments to T cells. The processed fragments are 

presented together with MHC on the APC surface. T cells interact with this 

complex via their T cell receptor (TCR). 

1.4.2.1 Professional vs non-professional APCs 

Many cells can present antigen to CD8+ T cells via MHC class I. These are 

termed “Non-professional APCs” 

Professional APCs are those that express MHC class II on their surface. 

Professional APCs can activate naïve T cells and stimulate CD4+ and CD8+ 

T cells. 

1.4.2.2 Professional APC types 

Professional APCs are broadly grouped into the following: 

 Dendritic cells (DC) – these are the most common and most important 

APC 

 Macrophages 

 B Cells – these only present specific antigens 

 Certain epithelial cells 

1.4.2.3 Dendritic Cells 

DCs are found principally within the skin (Langerhans cells) and mucosal 

surfaces. Immature DCs are also found in the circulation.  



1 Introduction 

 22 

Within the respiratory mucosa, DCs are found in a network immediately above 

and beneath the basement membrane (152, 153). From this position, DCs 

form long extensions throughout the epithelium and beyond the epithelial tight 

junctions to the airway lumen, whilst maintaining the epithelial barrier function. 

Through these extensions, DCs within the nasal mucosa are able to take up 

inhaled antigen directly from the airway lumen without otherwise 

compromising the epithelial barrier integrity (154). 

1.4.2.4 DC Subsets 

Two major populations of DCs have been identified. The first, myeloid DCs, 

include interstitial DCs and Langerhans cells. The second, plasmacytoid DCs, 

are mainly located in the blood and secondary lymphoid organs (155). 

Myeloid DCs express the myeloid marker CD11b and have traditionally been 

thought to be derived from the bone marrow. By contrast, plasmacytoid DCs 

express the CD45 isoform (B220) that is normally expressed by B cells and 

have traditionally been thought to be of lymphoid origin. However, the concept 

of a distinct pathway for each DC subtype has been challenged by the recent 

observation that plasmacytoid DCs are able to develop into myeloid DCs 

under the influence of viral infections (156). 

Functionally, Myeloid DCs possess potent antigen-presenting capacity and 

are associated with T cell activation and the initiation of adaptive immunity. By 

contrast, plasmacytoid DCs possess only a limited capacity to activate naïve 

T cells and constitute an essential component of innate immunity. This is 

achieved through the secretion of various cytokines and chemokines as well 

as by participating in the activation of natural killer cells (156, 157). 

1.4.2.5 DC Function 

Tissue resident respiratory tract mucosal DCs are immature. Upon antigen 

uptake in the presence of a danger signal, DCs undergo maturation (158).  

Following antigen uptake and processing, DCs transport the antigen from the 

mucosa to the draining lymph nodes. In the case of the nasal mucosa, these 
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are the cervical lymph nodes (154), whereas in the lung, these are the 

mediastinal lymph nodes (158). The DCs migrate to the T cell-rich area of 

draining lymph nodes where naïve T lymphocytes continuously pass by (159, 

160). 

Upon encountering specific T cells, DCs undergo a stable interaction with 

these cells, leading to T cell activation, division and differentiation (161). The 

interaction is a three step process consisting of: 

1. T cell receptor and MHCII interaction 

2. Costimulation by costimulatory molecules 

3. Ligation of pattern recognition receptors, such as Toll-like receptors, 

leading to a polarizing signal that promotes the development of either 

Th1, Th2 or Treg cells (162). 

 

Different DC subsets and distinct chemical micro-environments appear to 

direct the development of distinct Th populations, including Th1, Th2 and Treg 

subgroups (158, 162).  

1.4.3 Cytokines 

The term cytokine refers to a group of protein cell regulators including 

interleukins, lymphokines, monokines and interferons, which initiate and 

mediate intercellular communications, controlling growth, differentiation, 

function and death of cells (163, 164). Most cytokines act on the local 

environment through autocrine (self) and paracrine (nearby) mechanisms. 

Some cytokines also act at distant sites in a hormone-like mechanism.  

The precise source of inflammatory cytokines in AR and other eosinophilic 

respiratory diseases, such as nasal polyposis (NP) remains to be completely 

determined. In situ hybridisation and immunohistochemistry techniques have 

demonstrated that cytokines can be released by T-cells, eosinophils, mast 

cells, basophils and epithelial cells (165-168). 

In AR, initial release is likely to be via IgE dependent mechanisms with 

subsequent and sustained release through the inflammatory cascade (169). 
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1.4.3.1 Interleukin 5 

In humans, interleukin 5 (IL-5) is a 115 amino acid long Th2 cytokine. It is 

produced predominantly by T helper-2 cells, although it can also be produced 

by eosinophils (170), mast cells (22) and epithelial cells (171, 172). 

IL-5 is a cytokine highly specific for eosinophils, mediating eosinophil growth 

and differentiation (173-176), chemotaxis and migration (175, 177, 178), 

activation and effector function (175, 179, 180), and survival (175, 181). Its 

other functions include stimulation of B cell growth and increasing 

immunoglobulin secretion.  

Anti IL-5 

Observation of the importance of IL-5 in eosinophilic-type conditions such as 

asthma, AR and NP has led to considerable interest in the development of 

anti-IL5 therapies. Initial animal experiments demonstrated significant efficacy 

in suppressing inflammatory cell migration and airway hyperreactivity in a 

monkey model of allergic asthma using reslizumab, neutralising humanised 

mAb against IL-5 (182). Unfortunately, similar experiments in humans, despite 

reducing eosinophilia in the tissues and in the blood, have failed to 

demonstrate clinical efficacy (183, 184). However, two recent small studies 

using mepolizumab have since demonstrated clinical improvement (asthma 

exacerbations, asthma-related quality of life measures and prednisone 

requirements), but only in patients with severe refractory eosinophilic asthma 

(185, 186). 

1.4.3.2 Interleukin 10 

IL-10 is a pleiotropic anti-inflammatory cytokine. It is produced particularly by 

Treg cells, but also by Th0, Th1, Th2 cells, B cells, DCs, macrophages, mast 

cells, monocytes and keratinocytes (187, 188). IL-10 is generally considered a 

Th2-type cytokine and potently inhibits Th1-type responses (189). 

IL-10 plays a critical role in limiting and terminating inflammatory processes, 

particularly allergic inflammatory responses (189, 190). It acts through several 
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mechanisms to block pro-inflammatory cytokine production and regulate the 

differentiation and proliferation of several cell types including T-cells, DCs, B 

cells, mast cells, eosinophils and macrophages (191). 

IL-10 down-regulates the expression of T cell derived cytokines including IL-2, 

IL-4, IL-5 and interferon gamma (IFN-γ) (192-194).  

As previously discussed, IL-10 selectively inhibits only those T cells that are 

stimulated by low numbers of triggered T-cell receptors, which are dependent 

on CD28 co-stimulation (115). This is achieved through inhibition of the CD28 

signalling pathway (115). T cells which receive a strong signal from the T-cell 

receptor alone and do not require CD28 co-stimulation are not affected by IL-

10 (195). 

IL-10 exerts its functions on T cells through activation of Janus Kinase (Jak 1) 

and tyrosine kinase (Tyk2), members of the receptor-associated Janus 

Tyrosine kinase family, along with signal transducer and activator of 

transcription 1 (Stat1), Stat3 and in certain cells, Stat5 (196). IL-10 activates 

src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1), 

an intracellular tyrosine phosphatase (92). SHP-1, once active, suppresses 

the T cell costimulatory molecules CD28 and ICOS (92). In this model, IL-10 

effectively raises the threshold for T-cell activation during an APC/ T-cell 

interaction (92). 

IL-10 plays a key role in T-cell anergy. This is essential in tolerance to 

allergens and autoantigens, transplantation antigens and tumour antigens 

(115). 

IL-10 has a stimulatory effect on B cells, acting to shift antibody production 

away from IgE towards non-inflammatory IgG4 (115). Both total and allergen-

specific IgE is reduced (118, 197). 

IL-10 inhibits the expression of MHC class II, CD80 and CD86 on DCs and 

macrophages (189, 198). This markedly affects antigen presentation and T-

cell activation.  
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IL-10’s potent inhibition of macrophage activation results in reduced 

expression of pro-inflammatory cytokines (TNF-α, IL-1, IL-12, IL-6, GM-CSF), 

inflammatory enzymes (cyclo-oxygenase 2, inducible nitric oxide synthase) 

and chemokines (eotaxin, RANTES) (189). 

IL-10 reduces the release of pro-inflammatory cytokines by mast cells (194) 

and downregulates eosinophil function, activity and survival (199, 200).  

IL-10 supplements its inhibitory activity through the release of certain 

antagonists including soluble TNF receptors, IL-1 receptor antagonist (IL-

1RA) (201, 202) and tissue inhibitor of MMP (TIMP1) (203). 

The immunosuppressive role of IL-10 has been extensively studied in 

successful allergen-specific immunotherapy and a summary of its actions are 

listed in Table 1.4.1 (115). 

Table 1.4.1 Mechanisms of action of IL-10 that aid the immune system as observed during 

allergen-specific immunotherapy (115). 

IL-10 

 Suppresses allergen-specific IgE 

 Induces allergen-specific IgG4 

 Blocks B7/CD2c costimulatory pathway 

 Inhibits DC maturation, leading to reduced MHC class II 

 Reduces release of pro-inflammatory cytokines by mast cells 

 

1.4.3.3 Interferon-Gamma 

IFN-γ is a dimeric cytokine. It has a critical role in the Th1 pathway, promoting 

Th1 differentiation, whilst suppressing the Th2 pathway. IFN-γ promotes B-cell 

isotype switching to IgG2a and regulates MHC class I and II protein 

expression and antigen presentation. As well as its immunoregulatory role, it 
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has functions in innate and adaptive immunity against viral and intracellular 

bacterial infections and in control of tumours (204). 

IFN-γ is produced by Th1 cells as well as Natural Killer (NK) cells, 

macrophages and cytotoxic T and B cells (204, 205). 

1.4.3.4 Interleukin 4 

IL-4 is an important Th2 cytokine. It is mainly produced by Th2 cells, mast 

cells, basophils and eosinophils, natural killer (NK) T cells and gamma delta T 

cells (206). 

IL-4 regulates the protective immune response against helminths and other 

extracellular parasites (204). IL-4 has a key role in transforming naïve helper 

T cells (Th0) to Th2 cells. Conversely, it suppresses Th1 cell development. B 

cell proliferation is promoted via IgE class-switching, increased expression of 

MHC class II, up-regulation of B-cell receptors and increased expression of 

CD23 (204).  

1.4.3.5 Interleukin 2 

IL-2 is an important Th1 cytokine. IL-2 is produced mainly by CD4+ and CD8+ 

T cells. It is also produced by activated DCs and NK and NK T cells (207).  

IL-2 has pro-inflammatory properties including the stimulation of B-cells and 

antibody synthesis. It promotes proliferation and differentiation of NK cells 

(208). However, it also has anti-inflammatory properties. It is required for Treg 

cell development and can suppress Th17 cells (144). 

1.4.3.6 Tumour necrosis factor alpha 

Tumour necrosis factor-alpha (TNF-α) is a pleiotropic inflammatory Th1 

cytokine. TNF-α is mainly produced by macrophages, although it may be 

produced by other cells, including lymphoid cells, endothelial cells, and 

fibroblasts (209). 



1 Introduction 

 28 

TNF-α plays an important role in the immune response against bacteria, 

viruses, fungi and parasites. It also has a significant role in the necrosis of 

specific tumours. TNF-α is able to induce local and systemic inflammation 

through several mechanisms. It is an acute phase protein and activates a 

cascade of cytokines and increases vascular permeability. It recruits 

macrophages and neutrophils to sites of inflammation (209).  

1.4.3.7 Cytokine production during the late phase allergic response 

The early phase allergic response is characterised by the release of pre-

formed pro-inflammatory mediators. Such degranulation of cells occurs 

following the cross-linking of membrane-bound IgE. However, the late phase 

allergic response is characterised by the formation of pro-inflammatory 

cytokines and chemokines, which promote the recruitment, activation and 

perpetuation of cells in the inflammatory infiltrate (32). In particular, 

eosinophils are influenced by IL-5 along with Granulocyte-Macrophage 

Colony-Stimulation Factor (GM-CSF), eotaxin and Regulated on Activation 

Normal T Expressed and Secreted (RANTES) (210-214). mRNA levels of IL-

5, IL-4, IL-10 and IL-13 (215) have been demonstrated to be increased in 

nasal mucosa following allergen provocation. The principal source is thought 

to be Th2 cells (216), with contributions from eosinophils and mast cells (21, 

216, 217).  

1.4.3.8 Cytokine production in chronic disease 

Recent studies have demonstrated the capacity of eosinophils to produce T-

cell cytokines, particularly IL-5, in significant quantities when in an activated 

state (218). Furthermore, immunohistochemistry has demonstrated that most 

IL-5 positive cells in allergic mucosa are eosinophils rather than CD3+ cells 

(219). This has led to the proposal that, whilst T cells are the main source of 

IL-5 and inflammatory cytokines initially, in the long term, the contribution of 

activated eosinophils is of significance for the maintenance and progression of 

disease (219) 



1 Introduction 

 29 

1.5 Models of allergic disease 

Traditionally, allergy was thought to reflect excessive Th2 cytokine production 

upon exposure to allergen. Non-atopics were thought to have either no 

significant immunological response to allergen, or a Th1 mediated response.  

However, recent evidence suggests a more complex interaction between Th1 

and Th2 subsets, along with other, newly discovered, discrete T cell 

populations.  The contemporary view, based on studies of allergen-specific 

responses by peripheral blood T cells, is that the balance of allergen-specific 

Th2/Th1 cells and Treg cells may, at least partly, determine a host’s 

susceptibility to allergic disease (108, 220). A further confounding factor is the 

role of the recently described Th17 cells that mediate autoimmunity by 

affecting the balance of Th1 and Th2 cells along with role of modulatory 

molecules (Figure 1.5.1). 

 

Figure 1.5.1: A host’s susceptibility to allergic disease is based on a complex interaction of 

various cells  

Animal models of allergic airway disease have proven to be very useful in 

expanding our understanding of disease processes. However, animal models 

cannot accurately represent all aspects of human disease (221). 
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1.5.1 Mouse models – blood and tissue 

Most of the literature regarding Treg cell suppressive actions upon Th2 and 

Th1 pathways, to date, relates to murine experimental models.  Murine 

peripheral blood Treg cells and, more importantly, murine respiratory tissue 

resident Treg cells have both been studied (128, 222-224).  

In particular, murine models have facilitated testing of in vivo Treg cell 

function. Lewkowich et al depleted CD4+ CD25+ cells from allergy resistant 

immunocompetent mice prior to exposure to HDM allergen. This resulted in 

significantly increased Th2 responses, IgE levels, eosinophilia and airway 

hyperreactivity (AHR), alongside a corresponding reduction in CD4+ 

CD4+CD25high  T cells (224). 

Ostroukhova et al repeatedly exposed mice to low dose allergen, resulting in 

the formation of a regulatory T cell population. These regulatory T cells were 

then adoptively transferred to naïve mice, preventing allergic sensitisation 

(225). Similarly, Kearley et al used adoptive transfer of antigen-specific CD4+ 

CD25+ Tregs to suppress allergic inflammation and AHR via an IL-10 

dependent mechanism (128). 

While these models are useful, it is important to note that human evidence is 

required. 

1.5.2 Human models 

In humans, peripheral blood T cell responses to allergen have been studied, 

however, tissue evidence is lacking. The data regarding human respiratory 

cells is far less well established than in animal models. 

1.5.2.1 Current human peripheral blood evidence 

As discussed in section 1.4.1.6, human peripheral blood Treg cells, both 

naturally-occurring and allergen-induced, have been described (106, 131, 

226, 227). Markers for peripheral blood Treg cells and their produced 

cytokine, IL-10, have been demonstrated to be reduced in allergic individuals 
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compared to non-atopic controls (115, 116, 228, 229), and increased in such 

individuals when successfully treated with immunotherapy and glucocorticoids 

(115, 118, 120, 121, 230, 231). 

Children with AR sensitised to one allergen alone were followed for 2 years. 

Those children who remained sensitised to a single allergen had significantly 

higher blood IL-10 levels than those who developed sensitisation to multiple 

allergens (232). 

 

Children at higher risk of developing asthma (those under 2 years of age with 

3 episodes of physician diagnosed-wheeze, family history, concurrent eczema 

or AR) had a significantly lower number of CD4+CD25high and 

CD4+CD25+CTLA-4+ cells compared with healthy controls. (233) 

 

In a study of non-atopic beekeepers, in whom bee-stings are important to 

maintain tolerance, it was observed that venom allergen specific CD4+ IL-10+ 

T cells were increased seasonally (124). 

Studies of in vitro peripheral blood cultures demonstrated that non-atopics 

have significantly greater suppression of Th2/Th1 responses to allergen than 

atopics (106). Depletion of CD4+CD25high Treg populations from the same 

cultures resulted in significantly greater Th2 (IL-5) and Th1 (IFN-γ) responses 

to allergen in non-atopics (106).  

1.5.2.2 Current human tissue evidence 

Current evidence suggests that in atopic asthmatics, allergen induces IL-5 in 

bronchial explants (97). In AR, allergen induces IL-4 and IL-13 mRNA in ex 

vivo nasal mucosal biopsy specimens (234).  There is also limited evidence to 

suggest that tissue-based IL-10-producing T regulatory cells are important in 

limiting allergic inflammation (110). 

An early study demonstrated that intranasal instillation of IL-10 at the time of 

allergen challenge inhibited leukocyte recruitment (235). 
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John et al demonstrated a marked reduction in IL-10 mRNA and increased 

pro-inflammatory cytokines in bronchoalveolar lavage fluid and alveolar 

macrophages of asthmatic subjects compared to healthy controls (236). They 

subsequently demonstrated increased IL-10 mRNA and reduced pro-

inflammatory cytokines in alveolar macrophages following inhaled 

corticosteroid use. 

A study of paediatric lung tissue demonstrated reduced CD4+CD25high T cell 

numbers and activity along with Foxp3 mRNA in asthmatics compared to 

controls with cough but not asthma (237). Inhaled corticosteroids restored the 

studied T cell population numbers and function. 

Foxp3+ cell populations and mRNA, along with CD4+CD25+ T cell numbers  

were demonstrated to be reduced in the nasal tissues of subjects with AR 

compared to controls (238). By contrast, Foxp3+CD25+CD3+ cells were 

increased in the nasal mucosa of AR patients following clinically successful 

grass pollen immunotherapy (239). 

1.5.2.3 Tissue evidence restrictions 

Human respiratory tissue evidence is limited partly due to the difficulty in 

obtaining respiratory tissue. Traditionally, in asthma, this has required 

bronchial biopsy, an invasive medical procedure for which it is difficult to 

recruit volunteers. Bronchoalveolar lavage is an indirect alternative, but a poor 

substitute. As a consequence, an alternative source of human respiratory 

tissue that can provide the necessary data, without the potential morbidity and 

limited availability of bronchial tissue, is required. 

1.5.2.4 Alternative tissue – Nasal Polyps 

Human nasal polyps provide a ready source of large numbers of respiratory 

cells that may be harvested incidentally during therapeutic surgical 

procedures. 

It is well-established that allergen exposure does not induce symptoms in 

patients with nasal polyposis (240). Immune cells in nasal polyps have a 
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relatively innocuous response to allegens (240), suggesting constraint by local 

control mechanisms of allergen-specific Th2 responses.  Nasal polyp cells are 

therefore a useful resource for investigating the allergic response in human 

airways.  

1.6 Nasal Polyposis 

1.6.1 Definition 

Nasal polyposis (NP) is a chronic inflammatory condition of the paranasal 

sinus mucosa, resulting in pendulous, oedematous, epithelial lined structures 

that expand into the nasal cavity and sinuses (241). NP is characterised by 

nasal obstruction and hyposmia or anosmia (241).  

1.6.2 Epidemiology 

The prevalence of NP is reported to be between 1% to 4% of the adult 

population, with most cases occurring after the age of 20 years and peak 

incidence occurring between the ages of 50 and 60 (242).  

Childhood cases are limited mostly to patients with cystic fibrosis (243). Nasal 

polyps occur in all races and social classes (244). Some authors report an 

increased incidence in males (2-4:1) (244), but this has not been found by 

others (245). Hereditary factors have been considered (244). 

1.6.2.1 Risk factors 

The prevalence of NP is increased in asthmatic patients at 7 – 14% (241, 

245). The incidence is even higher in patients with nonallergic, steroid-

dependent asthma compared to those with allergic asthma (245). 

Furthermore, 20-50% of patients with nasal polyps have asthma (246, 247). 

Patients with aspirin sensitivity have a 60% incidence of NP (246). Around 8-

36% of polyp patients have aspirin sensitivity (245, 248-250). Samter’s triad 

which consists of asthma, aspirin sensitivity and nasal polyps is reported to 

occur in up to a third of NP patients (246, 247). 
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Other conditions associated with nasal polyps include Cystic fibrosis (243), 

allergic fungal sinusitis, Churg-Strauss syndrome (245), non-allergic rhinitis – 

eosinophilia syndrome (NARES) (251, 252), Young’s syndrome (247) and 

primary ciliary dyskinesia (253, 254).  

1.6.2.2 Nasal polyps are NOT associated with atopy 

The presence of nasal polyps is not an indicator of atopy or AR (255-258), 

despite the association with IgE, eosinophilia, IL-5 and mast cells. Indeed, 

anti-histamines are not effective in treating patients with nasal polyps (259). 

1.6.2.3 Subtypes 

NP may be subdivided into eosionophilic-predominant NP with a Th2 cytokine 

profile, which form the majority of cases, and neutrophil-predominant NP with 

a Th1 or Th17 cytokine profile (143).  

Neutrophil-predominance, rather than eosinophilia occurs in around 7% of NP 

cases. This is found in cases associated with CF, primary ciliary dyskinesia or 

Young’s syndrome, all of which are steroid-insensitive (245-247, 260).  

Recent reports from South-east Asian research groups have indicated that in 

Korean and Chinese populations, in contrast to Western populations, the 

majority of NP patients have a neutrophil-predominant form of the disease 

(261, 262). 

1.6.2.4 CRSwNP and CRSsNP 

NP is considered a subset of the overarching condition, chronic rhinosinusitis 

(CRS). CRS is divided into chronic rhinosinusitis with nasal polyps (CRSwNP) 

and chronic rhinosinusitis without nasal polyposis (CRSsNP). Apart from the 

obvious differences regarding the presence or absence of polyps, these 

conditions may be differentiated by the expression of inflammatory and 

remodelling mediators. CRSwNP demonstrates a Th2-type eosinophilic 

inflammation with increased IL-5 and IgE and low Transforming Growth factor 
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B1 (TGF-β1). By contrast, CRSsNP demonstrates a predominantly Th1 

environment with high IFN-γ and TGF-β1 levels (263). 

1.6.3 Histopathology 

1.6.3.1 Macroscopic 

Macroscopically, nasal polyps are usually bilateral, multiple and movable. 

They appear semi-translucent, pale-gray with a smooth, glistening surface. 

They arise from a pedicle attached around the ostiomeatal complex, mostly 

from the uncinate process and the middle turbinate (260). Symptoms are 

primarily due to physical obstruction, with patients complaining of nasal 

blockage and hyposmia or anosmia. Other symptoms include headache, 

facial pain, post-nasal drip and rhinorrhoea (253). 

1.6.3.2 Microscopic 

Nasal polyps are characterised by marked stromal oedema, pseudocysts in 

deeper layers (264) and inflammatory cells. In particular, marked eosinophilia 

is found in most, but not all, nasal polyps (265-267). Non-eosinophilic polyps 

tend to be neutrophil predominant. Mast cells are also found in many nasal 

polyps, often degranulated (268-270). Other findings include proliferation of 

connective tissue and epithelial cells (271), basal membrane thickening (272), 

fibrosis (273), and deposition of fibronectin and albumin (264, 274, 275). 

1.6.3.3 “Tertiary” lymphoid tissue within some nasal polyps 

In some NP patients, lymphoid tissue, classified as “Tertiary”, including 

follicular structures and lymphoid accumulations, has been demonstrated 

(276-278). Such tissue has been shown to have the capacity for local IgE 

production, both polyclonal and specific to Staphylococcus Aureus 

enterotoxins (SAE) (276).  
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1.6.3.4 Differences between polyps and regular nasal mucosa 

Polyps exhibit certain differences from regular nasal mucosa. The epithelium 

demonstrates a reduced number of ciliated cells and an increased number of 

goblet cells (279). Areas of squamous metaplasia or basal hyperplasia may 

also be seen (280). There are few nerve endings (243) and vascularisation is 

limited and lacking in vasoconstrictory innervation (281).  There is marked 

stromal oedema, psuedocysts in deeper layers (264) and inflammatory cells, 

particularly eosinophils and mast cells. 

1.6.4 Pathophysiology/ Aetiology 

The aetiology of NP is unknown but believed to be multifactorial. The polyp 

stroma contains numerous inflammatory cells, including eosinophils, mast 

cells and T lymphocytes (282-284). In addition, numerous inflammatory 

mediators including cytokines, chemokines, growth factors, adhesion 

molecules, IgE and other proteins are present. The role and relative 

importance of each of these is yet to be fully determined (285). 

Allergy does not appear to play a causative role in nasal polyps (286-288). 

However, the presence of high concentrations of IgE, IL-5, eosinophils and 

mast cells does suggest a Th2 pathway is involved in the pathogenesis, 

although the role of IgE remains controversial (289). Recently, it has been 

proposed that in NP patients that are atopic vs non-atopics, Th17 and its 

cytokine IL-17 may play a significant role (262). Many of these disparate 

findings are reflective of the numerous phenotypes and co-morbidities that 

exist within the definition of the condition, nasal polyposis. 

Animal experiments have been hampered by the fact that the chimpanzee is 

the only animal known to suffer from a similar condition (248). 

1.6.4.1 Eosinophilia 

Marked eosinophilia is seen in 80-90% of polyp patients in Western 

populations (143). Asthma, atopy, and aspirin intolerance are all associated 

with increased eosinophilia (240, 285). In all these instances, the eosinophil is 
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believed to be the key cell in the inflammatory process. Eosinophil activation 

is associated with numerous mechanisms thought to be involved in the 

pathogenesis of nasal polyps including injury of epithelium, thickening of the 

epithelial basement membrane, stromal fibrosis, angiogenesis, and epithelial 

and glandular hyperplasia (265, 266, 273, 290). Many of these mechanisms 

are initiated and modulated through the release of cytokines, chemokines and 

growth factors, some of which originate from the eosinophil itself (284), 

including IL-4, IL-5 (283, 291), GM-CSF (282, 292, 293) and TGF-ß1 (283, 

294), along with pro-inflammatory mediators including cys-LT, Eosinophil 

cationic protein (ECP), eosinophil peroxidase (EPO), major basic protein 

(MBP) and Leukotriene C4 (LTC4) (19).  

Eosinophils arise from pluripotent stem cells within the bone marrow via the 

actions of IL3, IL5 and GM-CSF (295). Eosinophils are recruited to nasal 

polyp stroma and activated primarily by the actions of IL5 in atopic patients 

(296). Current opinion suggests that, in the absence of allergy, GM-CSF 

appears to be the main factor in eosinophil recruitment (240, 296). Once 

within respiratory tissue, eosinophil apoptosis is delayed by the actions of IL-5 

and GM-CSF (297). 

1.6.4.2 Cytokines 

IL-5 

Several cytokines are implicated in polyp pathogenesis. However, IL-5 has 

consistently been found in numerous reports to be significantly elevated within 

tissue stroma (263, 298, 299). The eosinophil is the only human leukocyte to 

express a specific receptor for IL-5 (300, 301). IL-5 has been demonstrated to 

be essential for the recruitment, migration, activation, degranulation and 

survival of eosinophils in the tissue (219, 299, 302-304). The primary source 

of most IL-5 production is generally thought to be Th2 cells (281). However, 

eosinophil activation can result in increased IL-5 production from eosinophils 

themselves, leading to autocrine stimulation and attraction of other 

inflammatory cells (305). With immunohistochemistry, the majority of IL-5 



1 Introduction 

 38 

producing cells seen in polyp tissue are thought to be eosinophils (219). Mast 

cells are another suggested source of IL-5 (306). 

Other Cytokines 

Granulocyte-macrophage Colony-Stimulation Factor (GM-CSF) is also over-

expressed in nasal polyps and has a similar role to IL-5 in eosinophil 

chemotaxis (307) and survival (298, 308). 

Other cytokines implicated in nasal polyp pathogenesis include IL-1 (301), IL-

3 (309), IL4 (299, 301), IL6 and IL8 (284, 301), along with IFN-γ (310, 311). 

However, several contradictory studies have cast doubt on the significance of 

these cytokines (298, 299). 

1.6.4.3 Chemokines 

Other molecules that activate and recruit eosinophils are the chemokines 

eotaxin and RANTES (241, 307). Some authors have speculated that in 

patients with nasal polyps and allergic fungal sinusitis (AFS) or eosinophilic 

mucin rhinosinusits (EMCRS), eotaxin plays a greater role than IL-5 in 

eosinophil accumulation (312). The concentration of RANTES in nasal polyps 

has been subject to contradictory findings, ranging from unchanged relative to 

controls (298) to raised (313, 314). 

1.6.4.4 Growth factors 

Tissue remodelling and structural modifications in nasal polyps require the 

presence of growth factors and matrix metalloproteinases (MMPs). 

Transforming Growth factor B1 (TGF-β1) has been linked in nasal polyps with 

chemotaxis and activation of fibroblasts, increased production of proteins in 

the extracellular matrix, and inhibition of the production of enzymes that 

degrade the extracellular matrix components such as collagenase, heparinase 

and stromelysin (315-317). TGF-β1 has anti-inflammatory activity, decreasing 

IgE synthesis and eosinophil activation (318). Within polyps, it appears to be 

localized to the zones of extracellular matrix accumulation and stromal-cell 
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(myofibroblasts) infiltration (283). TGF-β1 is increased in nasal polyps 

compared to normal mucosa (294).  

Other growth factors that may play a role include Platelet Derived Growth 

Factor (PDGF) and Vascular Endothelial Growth Factor (VEGF) (294, 319). 

The adhesion molecules E-Selectin, P-Selectin and vascular cell adhesion 

molecule 1 (VCAM-1) also appear to be increased in nasal polyps (320-322). 

1.6.4.5 IgE 

Increased levels of IgE have been demonstrated in polyp patients, particularly 

those with atopy (245, 323, 324). In some cases, this IgE has been 

demonstrated to be locally produced within NP tissue (276). 

The high levels of IgE seen in atopic and non-atopic polyp patients suggests 

the IgE-dependent degranulation of effector cells, such as mast cells. The 

receptors that bind IgE to mast cells, FcεRI and FcεRII (CD23) have been 

observed on eosinophils also (325, 326). The IgE seen in non-atopic polyps is 

not specific for the major allergens seen in atopy (288). This suggests that 

pathogenisis may require an IgE dependent but non-specific degranulation of 

effector cells including mast cells and eosinophils (288). This theory may unify 

the observed high concentrations of IgE, IL-5 and eosinophils (288). 

1.6.4.6 Theories of causation 

The exact aetiology of NP remains unknown. Several theories have been 

proposed as possible explanations. 

Staphylococcus superantigen 

Recent studies have demonstrated increased IgE levels against 

staphylococcus aureus enterotoxins (SAE) within polyp tissue (258). 

Individual S aureus products induce various effects on nasal polyp mucosa. 

Surface protein A (SpA) induces mast cell degranulation, whereas 

enterotoxins induce Th2 type cytokines including IL-5, eotaxin, IL-2 soluble 
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receptor α, and IgE (263). Furthermore, in NP, increased rates of S aureus 

colonisation have been demonstrated (327). These findings support the 

possible role of staphylococcus superantigens in the development of nasal 

polyps. 

Injury and epithelial wound healing 

Some authors have proposed a model of polyp formation based on epithelial 

injury and dysregulated wound healing (328). Evidence is derived from animal 

experiments involving rat middle ears and rabbit maxillary sinuses (328-330). 

Epithelial injury was created and bacteria introduced to stimulate an 

inflammatory reaction. Connective tissue containing fibroblasts and 

inflammatory cells herniated through the epithelial lesion and was 

subsequently re-epithelialised. The resultant polyp-like structures closely 

resembled human nasal polyps with oedema and marked inflammatory cell 

infiltrate (328-330). 

Polyps typically arise between narrow areas of mucosal contact, such as the 

middle meatus. Chronic irritation in these narrow areas may provide the initial 

stimulus for polyp formation (259). The narrow areas may also provide the 

ideal environment for staphylococcus superantigens to persist (331). 

Vasomotor-imbalance theory 

Other authors suggest polyp formation is based on limited vascularity and 

poor vasoconstrictory innervation, resulting in reduced venous drainage and 

impaired clearance of degranulation products such as histamine. Prolonged 

histamine action results in increased stromal oedema (246-248, 332). In 

support of this concept is the finding that histamine concentrations in polyps 

are 100-1000 times higher than in serum (247, 248). 

1.6.4.7 Aspirin sensitivity 

A subgroup of NP patients are sensitive to aspirin and non-steroidal anti-

inflammatories (NSAIDS). Aspirin sensitive patients experience abnormal 

regulation of cyclo-oxygenase pathways. The anti-inflammatory prostaglandin 
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E2 (PGE2) is reduced in these patients compared to normal controls and 

aspirin-tolerant polyp patients (333). Decreased PGE2 production leads to 

enhanced 5-lipoxygenase activity and overproduction of cysteinyl 

leukotrienes, which result in mucosal inflammation (334). 

1.6.5 Clinical Features 

The hallmarks of NP are nasal obstruction and impaired olfaction. Other 

symptoms are similar to those observed with CRS, including rhinorrhoea, 

post-nasal drip and facial pain (241). 

1.6.6 Management 

1.6.6.1 Topical steroids 

Topical glucocorticords can be useful in the treatment of nasal polyps (241).  

The clinical efficacy of topical steroids is thought to be a result of the reduction 

in eosinophil infiltration (241). Neutrophil-predominant polyps, such as those 

in patients with cystic fibrosis or primary ciliary dyskinesia, are less likely to 

respond to topical steroids [10]. 

1.6.6.2 Systemic Steroids 

Oral corticosteroids are highly effective in the treatment of nasal polyps (241).  

Symptoms of obstruction and reduced olfaction respond almost immediately 

to the commencement of medication. Systemic steroids exert their effect on 

nasal polyps through various mechanisms, both genomic and non-genomic 

(335). However, the primary mechanism is thought to be due to a dehydrating 

effect on the polyps, which typically have a high fluid content (241). 

The usefulness of oral steroids is limited by systemic side effects. Typically, a 

brief course of oral therapy (20 days or less) will provide relief for up to 8 

weeks (336).  
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1.6.6.3 Surgery 

Surgical removal of nasal polyps provides rapid relief of symptoms with the 

incidental benefit of an abundant source of tissue for laboratory investigation. 

Unfortunately, recurrence is common, with the time to revision surgery varying 

between months to decades later. 

Recurrence following surgery is more likely in patients with asthma, with 

positive skin prick tests and with aspirin intolerance (243, 248). 

Medical management may be used to delay or avoid surgery. The mainstay of 

medical treatment remains topical or systemic steroids (248, 337-339). 

1.6.6.4 Adjuvant therapies 

Anti lL-5 

There is considerable interest in the use of anti-IL5 therapy in the treatment of 

NP. To date, however, there has been little evidence of clinical efficacy. A 

small (n=24) safety and pharmacokinetic trial demonstrated an improvement 

in NP symptom scores in half the patients treated with a single intravenous 

infusion of reslizumab vs placebo (340). 

Monteleukast 

In patients with Samter’s triad (NP, asthma and aspirin-sensitivity, see section 

1.6.2.1), there is evidence to suggest that the cysteinyl leukotriene receptor 

antagonist, montelukast, is effective in reducing nasal symptom scores and 

eosinophil counts in nasal smears and peripheral blood (341). 

Doxycycline 

Recent studies have demonstrated that certain antibiotics, such as 

doxycycline, may significantly reduce nasal polyp size for up to 12 weeks, 

following a 20 day course (336). 
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2 AIMS  

The aim of this thesis was to attempt to address the shortfall in evidence 

regarding the role of IL-10 producing regulatory T cells in suppressing 

allergen-specific Th2/Th1 responses in human respiratory tissue, through the 

use of ex vivo cell suspensions derived from nasal polyps. 

2.1 Hypotheses 

We hypothesised that: 

1. IL-10 production plays a critical role in limiting inflammatory allergen-

specific Th2 and/or Th1 responses following exposure of ex-vivo human 

respiratory cells, derived from nasal polyps, to allergen. 

2. Allergen-specific, tissue-resident T cells play a key role in the production of 

this IL-10. 

3. These tissue-resident T cells represent a specific population of regulatory 

T cells that act to suppress abnormal immune responses to allergen 

exposure and that this function is exerted through the anti-inflammatory 

actions of IL-10, produced by such regulatory T cells when exposed to 

specific allergen. 
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3 METHODS 

3.1 Ethical Approval 

The research was undertaken with the approval of The Guy’s Hospital ethics 

committee/ King’s College, London and the UK COREC (Central Office for 

Research Ethics Committees) (Approval Number 01/09/12). Full written 

informed consent was obtained from all participants prior to their involvement 

in the research. All consent and information forms were approved prior to use 

(Approval Number 01/09/12) (see Appendix 1 – Patient Information and 

Consent Forms) 

3.2 Patient population 

Non-smoking adult subjects (n=30) were recruited from the Rhinology 

outpatient clinic of the Otolaryngology Department, Guy’s Hospital, Guy’s and 

St Thomas’ NHS Foundation Trust, London, United Kingdom.  To be included 

in the study, subjects had to be diagnosed with NP of sufficient severity to 

require surgical clearance. The diagnosis of NP was made in accordance with 

the guidelines of the European Position Paper on Rhinosinusitis and Nasal 

Polyps (342), and was based upon symptoms, clinical examination, nasal 

endoscopy, and sinus computed tomography scan. Subjects requiring primary 

(n=21) or revision (n=9) surgery were included in the study as were subjects 

with aspirin-sensitivity (n=1). 

Subjects were excluded if they had: evidence of active infection within the 

nose at the time of surgery; had taken oral or topical (intranasally 

administered) corticosteroids, antihistamines, antileukotrienes, antibiotics or 

nasal decongestant medication in the 2 weeks immediately prior to surgery or 

had received immunotherapy within the last five years. 

Subject demographics are shown in Table 3.2.1. 
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Table 3.2.1: Subject Demographics 

Gender 

 Male 

 Female 

 

20 (67%) 

10 (33%) 

Age (years) 

 Mean 

 Range 

 

49 

29 to 78 

 

3.3 Measurement and classification of atopic status 

Prior to surgery, all subjects underwent skin prick tests to a panel of six 

common aeroallergens including cat, grass, house dust mite (HDM), dog, tree 

(silver birch) and Aspergillus (Soluprick, ALK, Horsholm, Denmark) alongside 

a positive histamine control and a negative diluent control. A positive skin 

prick test result was defined as a wheal response (diameter >= 3mm) to one 

or more allergens at 15 minutes, plus a positive histamine response and a 

negative diluent response. A negative skin prick test result was defined as no 

response or a response with a diameter < 3mm to all of the tested allergens at 

15 minutes, plus a positive histamine response and a negative diluent 

response. 

3.3.1 “Atopic” status by skin prick test alone for this study 

For the purposes of this study, “atopic” status was determined by skin prick 

test alone, as a specific in vivo measure of tissue-based immunological 

responsiveness. Subjects were classified as atopic (those with a positive skin 

prick test response, n=20) or non-atopic (those with negative skin prick test 

response, n=10)(Table 3.3.1). 

Clinical history of AR or asthma was recorded but not used to determine 

atopic status for the purposes of this study. In vitro serum IgE testing was not 

used to determine atopic status for the purposes of this study. 
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Table 3.3.1: Atopic status of recruited subjects 

Subject Status n 

Non-atopic 10 

Atopic 20 

 Cat 6 

 Grass 15 

 House Dust Mite 9 

 Dog 2 

 Tree (Silver Birch) 4 

 Aspergillus 0 

1 positive allergen alone 9 

2 positive allergens 7 

3 positive allergens 3 

4 positive allergens 1 

 

No subject responded to tree or dog allergen alone, that is, those subjects 

who responded to tree or dog allergen also responded to at least one other 

allergen. 

3.4 Obtaining nasal polyp tissue 

Surgery was performed at a single institution (Guy’s Hospital, London, United 

Kingdom) by one of several surgeons, including the author. Surgery was 

performed under general anaesthesia with either endotracheal intubation or 

laryngeal mask. After the induction of anaesthesia, vasoconstriction and local 
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anaesthesia was obtained with the topical administration of 10mls of “Moffet’s” 

solution (Cocaine hydrochloride 1mL of 10%, adrenaline 1mL of 1:1000, 

Sodium bicarbonate 2mL of 8.4%, saline 6mL) within the nose. The routine 

administration of intravenous steroids and/ or antibiotics was delayed until the 

polyps had been harvested. Polyp tissue was obtained bilaterally using 

Blakesley-Weil forceps. Freshly obtained tissues were placed in a container of 

normal saline and transported to the laboratory for processing. Specimens 

were kept refrigerated at 4C until they were processed. All processing was 

performed within several hours of harvesting and no more than 19 hours after 

collection. 

3.5 Isolation of cells 

Tissue fragments were rinsed with saline to remove residual blood. Tissue 

was dissected, teased apart, and digested for one hour at 37C using a 

solution of Hank’s Buffered Saline Solution (HBSS) (Life Sciences, Abingdon, 

UK), 2% Foetal calf serum (FCS) (PAA Laboratories, Pasching, Austria), and 

endotoxin-free collagenase (2 mg/mL, Liberase C1; Roche Diagnostics, 

Lewes, UK). The digest was then centrifuged at 200g, then re-suspended and 

cultured for 4 hours in a solution containing RPMI (Roswell Park Memorial 

Institute) 1640 medium (Life Sciences, Abingdon, UK), 10% FCS, 2 mmol/L L-

glutamine (Gibco/ Invitrogen, Paisley, UK) and gentamicin (250 mg/mL) 

(Sigma-Aldrich, Ayrshire, UK). The digested fragments were then filtered 

through a 100-micron cell strainer (BD Biosciences, Bedford, MA, USA) and a 

single cell suspension obtained.  

3.6 Depletion of T cells 

For one series of experiments, T cells were selectively depleted on the basis 

of CD3 expression on a “MACS” magnetic column according to the 

manufacturer’s instructions (Miltenyi Biotec, Bergisch Gladbach, Germany). 

The flow through this column typically resulted in > 95% depletion of CD3+ T 

cells as determined by Flow cytometric analysis (Figure 3.6.1).  As a control, 

cells were passed through the column without the initial incubation with 

antibody coated magnetic beads. 
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Figure 3.6.1 FACS analysis of flow through the magnetic column. (A) represents column control, 

(B) represents flow following CD3+ T cell depletion, demonstrating >95% depletion 

3.7 Cytokine Production 

Cell suspensions were seeded at 1 X 105 cells per well (96-well flat bottom, 

Nunc, Roskilde, Denmark) in complete medium (100 μL). Cell suspensions 

were stimulated with cat, grass or Der p1 house dust mite allergen (Aquagen 

SQ, ALK, Horsholm, Denmark) at concentrations of 101, 102, 103 and 104 

U/mL.  104 U/mL is approximately equivalent to 0.75 μg/mL protein. Initial 

experiments demonstrated a predictable dose response curve (Figure 3.7.1) 

and all subsequent experiments were carried out with allergen concentrations 

of 102 and 104 only.  
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Figure 3.7.1: Interleukin 10 production at 6 days following stimulation with various concentrations 

of cat allergen (in HBSS diluent) in a subject allergic to cat.  Note: two wells were tested for each 

allergen concentration. A representative experiment of 3 is shown. 

For all experiments, 2 control wells were seeded to reduce the likelihood of 

errors. 

3.7.1 Reconstitution of allergen 

The dry allergen is normally reconstituted with the manufacturer’s diluent, 

which contains phenol as a preservative. During initial experiments, the 

manufacturer’s diluent was compared with HBSS as a diluent. These 

experiments demonstrated that, at higher concentrations, the manufacturer’s 

diluent attenuates the cytokine response compared to HBSS (Figure 3.7.2), 

presumably due to the actions of phenol. In all subsequent experiments, 

HBSS was used as the reconstituting agent, rather than the manufacturer’s 

(ALK) diluent.  
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Figure 3.7.2: Interleukin 10 production at 6 days following stimulation with various concentrations 

of cat allergen using HBSS diluent (closed circles) or the manufacturer’s (ALK) diluent (open 

squares) in a subject allergic to cat.  Note: two wells were tested for each allergen concentration. 

A representative experiment of 3 is shown. 

3.7.2 Added allergen and sensitisation 

Allergen was added to cell suspensions from atopic and non-atopic 

individuals. 

When adding allergen to cell suspensions, three possible scenarios could 

arise: 

1) The individual was non-atopic to all allergens OR 

2) The individual was atopic and was sensitised to the added allergen OR 

3) The individual was atopic and was not-sensitised to the added allergen 

(ie sensitised to a different allergen to that added) 

For example, when adding cat allergen to a cell suspension, the individual 

from whom the cells were derived could be: 

1) Non-atopic to all allergens OR 
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2) Atopic to cat (“sensitised” allergen added) OR 

3) Atopic to grass, but not cat (“non-sensitised” allergen added) 

3.7.3 6 Days culture 

Peripheral blood mononuclear cell cytokine production is optimal at around 6-

days (97).  We performed time course experiments comparing day 6 with day 

2 (data not shown) and there was no significant difference in cytokine levels. 

Accordingly, 6 days culture was used for all subsequent experiments. 

3.7.4 Cell viability at 6 days culture 

Cell viability was maintained for the period of culture in representative 

experiments at 77± 9% (mean ± SEM). 

3.7.5 Antibodies  

Monoclonal antibodies were obtained: 

anti-IL-10 (BD Pharmingen, Cowley, Oxon, UK) 

Control antibodies (Rat isotype, mouse isotype) (BD Pharmingen, Cowley, 

Oxon, UK) 

A panel of fluorochrome conjugated monoclonal antibodies to leukocyte 

surface markers was obtained: 

CD45, CD326, CD14, CD16, CD117, CD3, CD19, CD4, CD8, and CD127 (BD 

Pharmingen, Cowley, Oxon, UK), CD103 (eBioscience, Hatfield, UK) 

mAbs to CD3 were prepared in-house  

mAbs to CD28 (Sanguin, Amsterdam, Netherlands) 

3.7.6 Supernatants harvested 

Following 6 days of culture, at 37C, the cell suspension supernatants were 

harvested and cytokine levels measured. 
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3.7.7 Cytokine measurement by cytometric bead array  

The cytokines IL-2, IL-4, IL-5, IL-10, TNF-α and IFN-γ were measured 

simultaneously by cytometric bead array using the Human Th1/Th2 kit from 

BD Biosciences, Bedford, MA, USA, according to the manufacturer’s 

instructions. The lower detection limit of the assay for each cytokine was 5 

pg/mL. 

3.7.8 Evidence of T-cell presence and activity by polyclonal 

stimulation 

In a representative set of experiments, polyp cell suspensions were stimulated 

with anti-CD3/CD28 mAb, a polyclonal T-cell activator to confirm T cell 

presence and potential activity (Table 4.5.2 and Figure 5.5.7) 

3.8 Statistical Methodology 

Data were analysed using GraphPad Prism 5 (GraphPad Software Inc, San 

Diego, CA, USA). Differences between paired groups with non-parametric 

data were tested with the Wilcoxon Signed Rank test. Differences between 

unpaired groups with non-parametric data were tested with the Mann-Whitney 

test. All tests were performed two-sided. A p value <0.05 was considered 

statistically significant.  

3.8.1 Analysed population 

Of the 30 subjects recruited into the study: two subjects’ cultures were 

excluded as the allergens were diluted solely with the manufacturer’s diluent 

(containing phenol); one was excluded because the cell suspension became 

infected during incubation; two sets of experiments were excluded as the 

cytokine production was assessed at day 2 alone and not day 6. Results from 

the remaining 25 experiments were included. 

In five of the remaining experiments, there was no significant production of IL-

5 or IL-10 (defined as all results less than 16 pg/mL): three of these cases 

were atopic and two were non-atopic. These cases were defined as non-
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responders, the remaining 20 cases were defined as responders. Non-

responders were excluded from the analysis, but all data are included in 

Appendix 2 – raw data. 

3.8.1.1 Demographics of analysed population 

Demographics of the 20 analysed subjects are shown in Table 3.8.1 

Table 3.8.1: Subject Demographics 

Gender 

 Male 

 Female 

 

12 (67%) 

8 (33%) 

Age (years) 

 Mean 

 Range 

 

46 

29 to 71 

 

3.8.1.2 Atopic status of analysed population 

The atopic status of the 20 analysed subjects is shown in Table 3.8.2 
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Table 3.8.2: Atopic status of subjects analysed 

Subject Status n 

Non-atopic 8 

Atopic 12 

 Cat 6 

 Grass 7 

 House Dust Mite 7 

 Dog 2 

 Tree (Silver Birch) 3 

 Aspergillus 0 

1 positive allergen alone 4 

2 positive allergens 4 

3 positive allergens 3 

4 positive allergens 1 

 

No subject responded to tree or dog allergen alone, that is, those subjects 

who responded to tree or dog allergen also responded to at least one other 

allergen. 
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4 CONSTITUTIVE CYTOKINE PRODUCTION 

4.1 Introduction 

Nasal polyp cell suspensions have been demonstrated to constitutively 

produce IL-5, IFN-γ and IL-10 (343-345), using Enzyme-linked 

immunosorbent assay (ELISA) on T cell suspensions (343), ELISA for 

intracellular cytokine detection (344) and reverse transcription polymerase 

chain reaction (RT-PCR) (345).  

4.2 Aims 

The aims of this experiment were: 

To determine the constitutive Th1/Th2 cytokine expression from cell 

suspensions derived from human nasal polyps.  

To determine the Th1/Th2 cytokine response from cell suspensions derived 

from human nasal polyps following polyclonal T cell activation using anti-CD3/ 

CD28 monoclonal antibodies, as a positive control, to test the viability of the 

model. 

4.3 Hypotheses 

We hypothesised that:  

Cell suspensions derived from human nasal polyps would respond with the 

production of IL-10, IL-5 and IFN-γ. 

The addition of anti-CD3/CD28 monoclonal antibodies would result in a 

marked increase of all Th1/Th2 cytokines measured.  

4.4 Methods 

The methods used are detailed in Chapter 3. 

Briefly, nasal polyps were harvested, processed, digested with collagenase 

and filtered to produce a single cell suspension that was seeded at 1 X 105 
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cells per well. Wells were incubated for 6 days and the cell supernatants 

harvested. In some cases cells were also stimulated with plate bound anti-

CD3 (1 µg/ml) and anti-CD28 (1ug/ml) mAbs and supernatants harvested 

after 48 hrs of culture. CBA analysis was performed to determine cytokine 

levels. 

4.5 Results  

4.5.1 Constitutive cytokine production 

Cell suspensions derived from human nasal polyps responded with the 

production of IL-10, IL-5 and IFN-γ. Constitutive production of IL-2, IL-4 and 

TNF-α was negligible (Table 4.5.1). 

The combined results for all subjects (12 atopic and 8 non-atopic, 20 total) are 

presented.  

Table 4.5.1: Constitutive cytokine production. Cell suspensions derived from human nasal polyps 

were cultured for 6 days and cytokine production was assessed by CBA. (n=20) showing mean ± 

SEM in pg/mL 

Cytokine Mean ± SEM (pg/mL) 

IL-10 62±11 

IL-5 93±21 

IFN-γ 191±54 

IL-2 16±2 

IL-4 7±1 

TNF-α 17±2 
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4.5.2 Cytokine production in response to anti-CD3/CD28 monoclonal 

antibodies 

Cell suspensions derived from human nasal polyps and stimulated with anti-

CD3/CD28 monoclonal antibodies for 48 hours responded with a marked 

increase of all Th1/Th2 cytokines measured (Table 4.5.2). 

The combined results for all subjects (3 atopics) are presented.  

Table 4.5.2: Cytokine production following stimulation with anti-CD3/CD28 mAb. Cell 

suspensions derived from human nasal polyps were stimulated with anti-CD3/CD28 mAb and 

cultured for 48 hours. Cytokine production was assessed by CBA. (n=3) showing mean ± SEM in 

pg/mL 

Cytokine Mean ± SEM (pg/mL) 

IL-10 181±61 

IL-5 295±87 

IFN-γ 2817±828 

IL-2 134±49 

IL-4 89±21 

TNF-α 194±36 

 

4.6 Discussion 

Our initial experiments demonstrated a viable model for testing the cytokine 

production in cells derived from human nasal polyps. We confirmed the 

findings of previous researchers, that nasal polyp cell suspensions 

constitutively produce a mixed Th1/Th2 cytokine expression including IL-10, 

IL5 and IFN-γ (343-345). The addition of anti-CD3/CD28 monoclonal 

antibodies resulted in significant production of all cytokines measured, 

confirming the presence of functional T cells.  
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5 ALLERGEN-SPECIFIC CYTOKINE RESPONSE 

5.1 Introduction 

5.1.1 Human peripheral blood evidence 

In humans, the cytokine response of allergen-specific peripheral blood T cells 

varies according to atopic status. Allergen-specific Th1, Th2 and Treg subsets 

and their associated cytokines are present in all individuals, but the relative 

proportions vary, with healthy individuals demonstrating a Treg/ IL-10 

predominance and atopic individuals demonstrating a Th2 skewed cytokine 

profile (220). 

Allergen-specific peripheral blood Treg cells, when exposed to allergen, can 

be induced in vivo and in vitro to secrete anti-inflammatory cytokines, 

particularly IL-10, thereby regulating immune responses (108, 131, 346, 347). 

Indeed, IL-10 levels in the circulation have been demonstrated to be reduced 

in allergic individuals compared to non-atopic controls (115, 220, 228), and 

increased in such individuals when successfully treated with immunotherapy 

or glucocorticoids (115, 118, 121, 231, 348, 349).  

5.1.2 Human respiratory tissue evidence 

The evidence regarding the immunomodulatory cytokine response to specific 

allergen in human respiratory tissue (as opposed to the peripheral blood) from 

atopic and non-atopic individuals is yet to be comprehensively established.  

Ex vivo bronchial biopsies from atopic asthmatics responded to HDM allergen 

stimulation with increased IL-5 by ELISA, after 24 hours culture, whereas 

atopic, non-asthmatics did not (97). Similar results have been seen with 

bronchoalveolar lavage (350, 351) and nasal biopsies in AR (352).  

There is limited human evidence to suggest that tissue-resident IL-10 

producing T regulatory cells are important in limiting allergic inflammation at 

mucosal sites (97, 110, 234). Much of this evidence is derived indirectly from 

studies of bronchoalveolar lavage (236, 350), intranasal instillation of 
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cytokines (235), and the observation that treatments that improve disease 

symptoms, such as glucocorticoids and allergen immunotherapy are 

associated with increased CD4+CD25+ Tcells in the nasal tissue of subjects 

who responded to treatment (226). It remains unclear whether the Th2 

skewed cytokine response to specific allergen seen in some atopics is a 

consequence of reduced Treg cell numbers or defective Treg cell function 

(353), or a third, less-likely possibility, that activation of effector T cells in 

atopics is immune to Treg cell suppression – ie the defect lies in the effector 

cells (106).  

5.2 Aims 

The aims of this experiment were: 

To determine the effect of specific allergen on cytokine production by cells 

derived from human nasal polyps. 

To determine whether such cytokine production varied according to atopic 

status and sensitisation status to the specific allergen used. 

5.3 Hypotheses 

We hypothesised that:  

The addition of specific allergen to cell suspensions derived from human 

nasal polyps would result in increased regulatory IL-10 production, consistent 

with the clinically observed lack of allergic response to specific allergen in 

subjects with nasal polyps. 

5.4 Methods 

The methods used are detailed in Chapter 3. 

Briefly, nasal polyps were harvested, processed, digested with collagenase 

and filtered to produce a single cell suspension that was seeded at 1 X 105 

cells per well. Wells were incubated with and without allergen at 102 and 104 
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U/mL for 6 days and the cell supernatants harvested. CBA analysis was 

performed to determine cytokine levels. 

5.5 Results 

The results for all subjects (12 atopic and 8 non-atopic, 20 total) and all 

allergens (cat, grass, HDM) are presented for each cytokine.  

Results are also subdivided according to atopic status (atopic and non-

atopic). Results for atopics are further subdivided according to whether the 

allergen added was one that the subject was sensitised to, or not-sensitised to 

(ie the subject was atopic, but to a different allergen). 

Cat allergen was added to 18 polyp cell suspensions (6 atopic and sensitised, 

6 atopic but non-sensitised to cat and 6 non-atopic), grass allergen to 14 (7 

atopic and sensitised, 2 atopic but non-sensitised to grass and 5 non-atopic) 

and HDM allergen to 14 (6 atopic and sensitised, 3 atopic but non-sensitised 

to HDM and 5 non-atopic). This gave a total of 46 sets of results for 20 

subjects (Table 5.5.1). 

Table 5.5.1: Number of results according to atopy and sensitisation status. 

  Atopic Non-atopic 

  Sensitised to 

allergen added 

Non-Sensitised to 

allergen added 

A
lle

rg
en

 a
dd

ed
 Cat 6 6 6 

Grass 7 2 5 

HDM 6 3 5 

 

Note, that not all allergens were added to each cell suspension. For example, 

a non-atopic subject would have their cell suspension tested with either one, 

two or all three allergens. 
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Two different concentrations (102 U/mL and 104 U/mL) are presented for each 

of the sets of results. 

5.5.1 IL-10 

5.5.1.1 IL-10 Combined results 

Allergen induced IL-10 production by human nasal polyp cell suspensions in a 

dose-response fashion (Figure 5.5.1). 
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Figure 5.5.1: Production of IL-10 by polyp cell suspensions from atopic and non-atopic subjects 

following exposure to allergen. (A) Combined results for all subjects presented (n=20 subjects).  

Allergens added: cat (n=18), grass (n=14) or HDM (n=14) (46 sets of results for 20 subjects) at 

concentrations of 102 and 104 U/mL. (B) indicates mean ± SEM.  *** denotes statistically 

significant difference from control (no allergen added); p<0.005 by Wilcoxon matched-pairs 

signed rank test. 

5.5.1.2 IL-10 Results subdivided by atopic status 

Human nasal polyp cell suspensions from atopic subjects produced increased 

IL-10 when exposed to allergen that the subject was sensitised to (Figure 

5.5.2). 

Human nasal polyp cell suspensions from atopic subjects did not significantly 

produce IL-10 when exposed to other allergens (Figure 5.5.2). 

Human nasal polyp cell suspensions from non-atopic subjects did not 

significantly produce increased IL-10 when exposed to allergen, although 

there was a trend towards increased production (Figure 5.5.2). 
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The results for added cat and grass allergen are presented for all subjects (12 

atopic and 8 non-atopic, 20 total). The results for added HDM allergen are not 

presented as they were inconsistent and did not demonstrate significance 

(see Appendix 2 – raw data and 5.6 Discussion). 

Cat allergen was added to 18 polyp cell suspensions (6 atopic and sensitised, 

6 atopic but non-sensitised to cat and 6 non-atopic), grass allergen to 14 (7 

atopic and sensitised, 2 atopic but non-sensitised to grass and 5 non-atopic). 

This gave a total of 32 sets of results for 20 subjects. 

 

Figure 5.5.2: Production of IL-10 by polyp cell suspensions from atopic and non-atopic subjects 

following exposure to allergen. Results subdivided according to atopy (atopic and non atopic) 

and allergen sensitisation status (sensitised and non-sensitised) (n=20 subjects).  Allergens 

added: cat (n=18), grass (n=14) (32 sets of results for 20 subjects) at concentrations of 102 and 

104 U/ml showing mean ± SEM.  *, ** denotes statistically significant difference from control (no 

allergen added); p<0.05, p<.01 by Wilcoxon matched-pairs signed rank test. 
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5.5.2 IL-5 

5.5.2.1 IL-5 Combined results 

The addition of allergen to human nasal polyp cell suspensions did not induce 

the production of IL-5 (Figure 5.5.3). 

 

 

Figure 5.5.3: Production of IL-5 by polyp cell suspensions from atopic and non-atopic subjects 

following exposure to allergen. Combined results for all subjects presented (n=20 subjects).  

Allergens added: cat (n=18), grass (n=14) or HDM (n=14) (46 sets of results for 20 subjects) at 

concentrations of 102 and 104 units/mL showing mean ± SEM. No statistically significant 

difference from control (no allergen added) by Wilcoxon matched-pairs signed rank test. 

5.5.2.2 IL-5 Results subdivided by atopic status 

The addition of allergen to human nasal polyp cell suspensions did not induce 

the production of IL-5 in any of the subgroups analysed, although there was a 

non-significant trend towards increased IL-5 production in atopics with 

sensitised allergen (Figure 5.5.4). 
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Figure 5.5.4: Production of IL-5 by polyp cell suspensions from atopic and non-atopic subjects 

following exposure to allergen. Results subdivided according to atopy (atopic and non atopic) 

and allergen sensitisation status (sensitised and non-sensitised) (n=20 subjects).  Allergens 

added: cat (n=18), grass (n=14) or HDM (n=14) (46 sets of results for 20 subjects) at 

concentrations of 102 and 104 U/ml showing mean ± SEM.  No statistically significant difference 

from control (no allergen added) by Wilcoxon matched-pairs signed rank test. 

5.5.3 IFN-γ  

5.5.3.1 IFN-γ Combined results 

The addition of allergen to human nasal polyp cell suspensions did not induce 

the production of IFN-γ (Figure 5.5.5). There was a non-significant trend 

towards decreased production in the presence of allergen. 
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Figure 5.5.5: Production of IFN-γ by polyp cell suspensions from atopic and non-atopic subjects 

following exposure to allergen. Combined results for all subjects presented (n=20 subjects).  

Allergens added: cat (n=18), grass (n=14) or HDM (n=14) (46 sets of results for 20 subjects) at 

concentrations of 102 and 104 units/mL showing mean ± SEM. No statistically significant 

difference from control (no allergen added) by Wilcoxon matched-pairs signed rank test. 

5.5.3.2 IFN-γ Results subdivided by atopic status 

The addition of allergen to human nasal polyp cell suspensions did not induce 

the production of IFN-γ in any of the subgroups analysed (atopic sensitised, 

atopic non-sensitised and non-atopic) (data not shown). 

5.5.4 IL-4, IL-2 and TNF-α  

5.5.4.1 IL-4, IL-2 and TNF-α Combined results 

The addition of allergen to human nasal polyp cell suspensions did not induce 

the production of IL-4, IL-2 or TNF-α, with the amount produced remaining 

barely detectable (Figure 5.5.6). 
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Figure 5.5.6: Production of (A) IL-4, (B) IL-2 and (C) TNF-α by polyp cell suspensions from atopic 

and non-atopic subjects following exposure to allergen. Combined results for all subjects 

presented (n=20 subjects).  Allergens added: cat (n=18), grass (n=14) or HDM (n=14) (46 sets of 

results for 20 subjects) at concentrations of 102 and 104 units/mL showing mean  SEM. No 

statistically significant difference from control (no allergen added) by Wilcoxon matched-pairs 

signed rank test. 

5.5.5 Combined results for all cytokines 

To facilitate comparison of absolute values, Figure 5.5.7 demonstrates all 

measured cytokines, including constitutive, allergen-specific (at one of the two 

measured concentrations; 104 U/mL) and anti-CD3/CD28 mAb-stimulated 

production, using similar axes. 
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Figure 5.5.7: Constitutive, Allergen-specific (104) and anti-CD3/CD28 mAb-stimulated production 

of (A) IL-10, (B) IL-5, (C) IFN-γ, (D) IL-2, (E) IL-4 and (F) TNF-α showing mean ± SEM. 

Constitutive and allergen-specific production showing combined results for all subjects (n=20) at 

6 days. Allergens added: cat (n=18), grass (n=14) or HDM (n=14) (46 sets of results for 20 

subjects) at concentration of 104 units/mL. Anti-CD3/CD28 antibody-stimulated production 

showing results for n=3 subjects at 48 hours. 
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5.6 Discussion 

5.6.1 Summary of key findings 

The addition of specific allergen to ex vivo human nasal polyp cell 

suspensions results in increased IL-10 production, in a dose-response 

fashion, particularly where the allergen added is one the subject is sensitised 

to. By contrast, production of IL-5 and IFN-γ does not increase. 

These results imply an IL-10 dependent local suppression of Th2 and Th1 

responses to specific allergen in nasal polyp tissue. 

5.6.2 IL-10 

The addition of specific allergen resulted in a predictable, dose-response 

increase in the production of IL-10. The effect was marked and statistically 

significant. 

The IL-10 produced was induced by ex vivo cells, implying local mucosal 

tissue based responses, without the need for draining lymph node processing 

or peripheral blood cell interactions. 

Upon subdividing the results, the significant response associated with 

sensitised allergens and the weak response associated with non-sensitised 

allergens may represent the higher percentage of immune cells specific to the 

sensitised allergen in these subjects’ cell suspensions. 

The addition of HDM allergen demonstrated an unexpected result, compared 

to cat and grass allergen. Stimulation with HDM allergen resulted in a marked, 

but non-statistically-significant, increase in IL-10 production in non-HDM-

sensitised atopic subjects. The number of data points in this subgroup was 

insufficient (n=3) to reach statistical significance and allow any meaningful 

conclusions to be drawn. However, the results were intriguing and may 

possibly be explained by the unusual mechanisms of HDM allergy. 

Allergy to HDM is mediated by the typical “adaptive” Th2 pathway, involving 

IgE mediated recruitment of inflammatory mediators. However, unlike other 
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allergens, HDM can also elicit allergic reactions via the “innate” immune 

response. Der p1, in addition to being an antigenic protein, is also a protease 

(354) and has been demonstrated to directly activate airway epithelial cells to 

secrete pro-inflammatory, pro-Th2 cytokines (30). It is possible that this 

mechanism may be related to the observed response in non-HDM-sensitised 

atopics to stimulation with HDM allergen. 

5.6.3 IL-5 

Ex vivo human nasal polyp cell suspensions do not respond to the addition of 

allergen with the production of IL-5. Despite the presence of constitutive IL-5 

production, there appears to be a regulatory mechanism in place, limiting the 

Th2 response to allergen stimulation.  

This correlates with the observed clinical findings that nasal polyps do not 

respond to allergen exposure with typical allergic responses clinically or with 

the production of immune mediators (240, 276).  It has been noted that ex 

vivo bronchial explants in atopic, non-asthmatics do not respond to added 

allergen with IL-5 production, whereas in atopic asthmatics, IL-5 is produced 

(97). Gevaert et al have proposed that this lack of response in nasal polyps 

may be due to locally produced polyclonal IgE, which saturates Fcε  receptors 

on mast cells, limiting the ability of added allergen to stimulate a response 

(276). Polyclonal IgE production may also limit the capacity for specific 

antibody synthesis (276). However, polyclonal IgE has only been 

demonstrated in around 50% of Western NP patients (276). Therefore, 

another more universal regulatory mechanism appears to be in place. 

5.6.4 IFN-γ 

Ex vivo human nasal polyp cell suspensions do not respond to the addition of 

allergen with the production of IFN-γ. As observed with IL-5, despite the 

presence of constitutive IFN-γ production, there appears to be a regulatory 

mechanism in place, limiting the Th1 response to allergen stimulation.  
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5.6.5 IL-4, IL-2 and TNF-α 

Ex vivo human nasal polyp cell suspensions do not constitutively produce 

appreciable quantities of IL-4, IL-2 and TNF-α and do not respond to the 

addition of allergen with the production of increased IL-4, IL-2 and TNF-α by 

CBA. Stimulation with anti-CD3/CD28 mAbs did result in increased production 

of IL-4, IL-2 and TNF-α demonstrating the presence of viable T cells with the 

functional capacity to produce these cytokines. 
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6 REGULATION OF IL-5, IFN-γ AND TNF-α BY IL-10 

6.1 Introduction 

In mucosal sites, such as the lung (127-129) and gut (130), it has been 

suggested that IL-10 plays a critical role in suppressing pathologic Th2 and 

Th1 responses to allergen.  

IL-10 levels have been demonstrated to be reduced in pathologic states and 

elevated in health (115, 116, 228, 229). Patients undergoing successful 

treatment with allergen immunotherapy and glucocorticoids have been 

demonstrated to have raised IL-10 levels as their tolerance to allergen 

improves (115, 118, 121, 131, 231, 348, 349). This has largely been seen in 

animal tissue, human peripheral blood and indirectly in human respiratory 

tissue, however there is a limited amount of corroborating evidence from 

human nasal tissue (122). 

These findings suggest that IL-10 has a regulatory role in suppressing 

abnormal responses to allergen. 

6.2 Aims 

The aim of this experiment was to determine whether IL-10 suppresses IL-5 

and IFN-γ production, as representatives of Th2 and Th1 type responses, 

respectively, in human nasal polyp cell suspensions. 

6.3 Hypotheses 

We hypothesised that neutralising IL-10 in human nasal polyp cell 

suspensions would result in increased production of IL-5 and IFN-γ in 

response to allergen.  

6.4 Methods 

The methods used are detailed in Chapter 3. 
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Briefly, nasal polyps were harvested, processed, digested with collagenase 

and filtered to produce a single cell suspension that was seeded at 1 X 105 

cells per well. Anti-IL-10 antibodies were added to non-control wells. Rat IgG1 

was used as an isotype control against anti-IL-10 antibodies in some 

experiments. Wells were incubated with and without allergen at 102 and 104 

U/mL for 6 days and the cell supernatants harvested. CBA analysis was 

performed to determine cytokine levels. 

6.5 Results 

Polyp cell suspensions from 13 subjects (8 atopic and 5 non-atopic) were 

used, with 1-3 allergens added, for a total of 22 sets of results. A 

concentration-matched isotype control antibody, Rat IgG1, was used during 

initial experiments (n=6) and had no effect upon production of any of the 

cytokines tested. 

Cat allergen was added to 8 polyp cell suspensions (5 atopic and 3 non-

atopic), grass allergen to 7 (3 atopic and 4 non-atopic) and HDM allergen to 7 

(3 atopic and 4 non-atopic). This gave a total of 22 sets of results for 13 

subjects 

6.5.1 Effect of addition of anti-IL-10 antibodies on IL-10 production 

The addition of neutralising anti-IL-10 antibodies to human nasal polyp cell 

suspensions stimulated with allergen resulted in almost complete ablation of 

IL-10 production, as expected (Figure 6.5.1).  
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Figure 6.5.1: Allergen-specific IL-10 production by polyp cell suspensions from atopic and non-

atopic subjects. Combined results for all subjects presented. Allergen (cat, grass, HDM) added at 

(A) 102 and (B) 104 units/mL (n=13 subjects with 1-3 allergens added for 22 sets of results for 

102, 102 + anti-IL-10, 104 and 104 + anti-IL-10; n=6 with 1 allergen added for 6 sets of results for 

102 + isotype control and 104 + isoptype control). Mean ± SEM. *** denotes statistically 

significant difference from sample with allergen added but without added anti IL-10 (*** p < 0.005 

by Wilcoxon matched-pairs signed rank test). 
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6.5.2 Effect of addition of anti-IL-10 antibodies on IL-5 production 

The addition of anti-IL-10 antibodies was associated with a significant 

induction of IL-5 production (Figure 6.5.2).  
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Figure 6.5.2: Allergen-specific IL-5 production by polyp cell suspensions from atopic and non-

atopic subjects. Combined results for all subjects presented. Allergen (cat, grass, HDM) added at 

(A) 102 and (B) 104 units/mL (n=13 subjects with 1-3 allergens added for 22 sets of results for 

102, 102 + anti-IL-10, 104 and 104 + anti-IL-10; n=6 with 1 allergen added for 6 sets of results for 

102 + isotype control and 104 + isoptype control). Mean ± SEM. *** denotes statistically 

significant difference from sample with allergen added but without added anti IL-10 (*** p < 0.005 

by Wilcoxon matched-pairs signed rank test). 
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6.5.3 Effect of addition of anti-IL-10 antibodies on IFN-γ production 

The addition of anti-IL-10 antibodies also resulted in the induction of IFN-γ at 

one of the two concentrations (104 units/mL). At the lower concentration (102 

units/mL), the result approached significance at p=0.06 (Figure 6.5.3). 
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Figure 6.5.3: Allergen-specific IFN-γ production by polyp cell suspensions from atopic and non-

atopic subjects. Combined results for all subjects presented. Allergen (cat, grass, HDM) added at 

(A) 102 and (B) 104 units/mL (n=13 subjects with 1-3 allergens added for 22 sets of results for 

102, 102 + anti-IL-10, 104 and 104 + anti-IL-10; n=6 with 1 allergen added for 6 sets of results for 

102 + isotype control and 104 + isoptype control). Mean ± SEM. * denotes statistically significant 

difference from sample with allergen added but without added anti IL-10 (* p < 0.05 by Wilcoxon 

matched-pairs signed rank test). 
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6.5.4 Effect of addition of anti-IL-10 antibodies on TNF-α production 

The addition of anti-IL-10 antibodies was associated with a significant 

induction of TNF-α at both concentrations tested (Figure 6.5.4).  

There was an outlier (Experiment 24). Following exclusion of the outlier (not 

shown), the result at the weaker concentration (102) remained statistically 

significant, whereas the result at the stronger concentration (104) did not 

reach significance (p=0.052) (not shown). 
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Figure 6.5.4: Allergen-specific TNF-α production by polyp cell suspensions from atopic and non-

atopic subjects. Combined results for all subjects presented. Allergen (cat, grass, HDM) added at 

(A) 102 and (B) 104 units/mL (n=13 subjects with 1-3 allergens added for 22 sets of results for 

102, 102 + anti-IL-10, 104 and 104 + anti-IL-10; n = 6 with 1 allergen added for 6 sets of results for 

102 + isotype control and 104 + isoptype control). Mean ± SEM. **, * denotes statistically 

significant difference from sample with allergen added but without added anti IL-10 (** p < 0.01, * 

p<0.05 by Wilcoxon matched-pairs signed rank test). 
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6.5.5 Effect of addition of anti-IL-10 antibodies on IL-2 and IL-4 

production 

The addition of anti-IL-10 antibodies was not associated with any significant 

change in production of IL-2 or IL-4 (not shown). 

6.6 Discussion 

When IL-10 was neutralised with anti-IL-10 antibodies, there was a significant 

increase in IL-5 and, to a lesser extent, IFN-γ and TNF-α production in 

response to allergen exposure. The earlier experiments demonstrated that, in 

response to allergen exposure, production of these cytokines is not increased 

compared to constitutive production, whereas IL-10 production is increased.  

The current experiments indicate that IL-10 normally has a suppressive effect 

upon Th2/ Th1 cytokine production in response to allergen. When this 

suppressive effect is removed, human nasal polyp cell suspensions respond 

by producing significant quantities of IL-5 and, to a lesser extent, IFN-γ and 

TNF-α. 

This suggests a critical regulatory role for IL-10 in suppressing the Th2 and 

Th1 pathways in response to allergen exposure in human respiratory tissue. 

This role has been demonstrated in vivo in mice, where IL-10 administration 

before allergen treatment induced antigen-specific peripheral blood T-cell 

unresponsiveness (355).  

The role of IL-10 has also been demonstrated to be critical within murine 

mucosal surfaces, such as the lung (127-129) and gut (130), in order to 

suppress allergic responses.  

In human peripheral blood, IL-10 levels are increased in atopic subjects 

successfully treated with immunotherapy and glucocorticoids (115, 118, 120, 

121, 230, 231), as well as in healthy beekeepers, with a history of multiple 

bee-stings (356). Ex vivo neutralisation of IL-10 in PBMC cultures from such 

immunotherapy treated (118) and bee-keeping individuals (356), resulted in T 

cell proliferation and cytokine production typical of an allergic response (115). 
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Our experiments demonstrate a similar critical functional role for IL-10 in 

regulating the Th2 and Th1 responses to allergen exposure in ex vivo nasal 

polyp derived human respiratory tissue (as distinct from peripheral blood). 
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7 ORIGIN OF OBSERVED IL-10 

7.1 Introduction 

Having established that human nasal polyp cell suspensions produce IL-10 

when exposed to allergen, we sought to determine the cell origin of this 

observed cytokine.  

Nasal polyp cell suspensions are known to contain epithelial cells, leucocytes 

(T cells, B cells, mast cells, eosinophils, neutrophils, monocytes/ 

macrophages) and other cells (280). Table 8.2.1 indicates the composition of 

polyp cell suspensions by flow cytometry, carried out in our laboratory, 

subsequent to the experiments referred to in this thesis (see 8.2 Composition 

of nasal polyp cell suspensions). 

IL-10 is known to be secreted by Treg cells. However it is also produced by B 

cells, mast cells, macrophages, eosinophils, epithelial cells and certain APCs 

(357). Other T cells, including CD8+ and effector CD4+ Th1, Th2 and Th17 

cells may produce IL-10 (358, 359).  

7.2 Aims 

We sought to determine the cell origin of the observed IL-10, produced when 

human nasal polyp cell suspensions were exposed to allergen. 

7.3 Hypotheses 

We hypothesised that the observed IL-10 was either being produced by T 

cells or via a T cell dependent process and that T cell depletion would result in 

a significant reduction in allergen-specific IL-10 production.  

7.4 Methods 

The methods used are detailed in Chapter 3. 

Briefly, nasal polyps were harvested, processed, digested with collagenase 

and filtered to produce a single cell suspension.  
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In 2 experiments, T cells were depleted from the cell suspension prior to the 

addition of allergen, using a magnetic column. FACS analysis demonstrated 

>95% depletion of CD3+ T cells by this procedure (Figure 3.6.1). Controls 

were “mock depleted” by passing them through the column without depletion. 

Wells were seeded at 1 X 105 cells per well and incubated with and without 

allergen at 102 and 104 U/mL for 6 days and the cell supernatants harvested. 

CBA analysis was performed to determine cytokine levels. 

7.5 Results 

There was a significant decrease in IL-10 production from cell suspensions 

following T cell depletion (Figure 7.5.1). Polyp cell suspensions from 2 

subjects (1 atopic and 1 non-atopic) were used, with 3 allergens added, for a 

total of 6 sets of results 

 

Figure 7.5.1: Allergen specific IL-10 production by polyp cell suspensions following depletion of T 

cells, showing mean  SEM. T cells were depleted on a MACS column and IL-10 production in 

response to allergen determined. Results are also shown for a column control (see 3.6 Depletion 

of T cells). Allergen added at 102 and 104 units/mL. Subjects n=2 with 3 added allergens for a 

total of 6 sets of results.* denotes statistically significant difference between column controls and 

T-cell depleted cell suspensions (* p < 0.05 by Wilcoxon matched-pairs signed rank test) 
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7.6 Discussion 

Following depletion of T cells from human nasal polyp cell suspensions, there 

was a significant reduction in IL-10 production with allergen exposure. 

These results indicate that the observed IL-10 is produced either directly by T 

cells or via a T-cell dependent process. 

Several respiratory tissue cell types have been identified as being capable of 

producing IL-10, including mast cells (360), macrophages (131) and B cells 

(361). All of these cell types are present within nasal polyp cell suspensions 

(see 8.2 Composition of nasal polyp cell suspensions). Even if these cells are 

a significant source of the observed IL-10, our results indicate that such IL-10 

production requires signalling from allergen-activated T cells. 

Despite this, we propose that the principal source of the observed IL-10 is 

likely to represent allergen-specific T cells within human nasal polyp cell 

suspensions (see 8.1 Intracellular cytokine production). This may include both 

Treg populations and effector T cell subsets. Indeed, it has been 

demonstrated that CD4+CD25+ Treg cells can anergize CD4+CD25- T cells 

then recruit the same anergized cells to produce IL-10 (359). This suggests 

that Treg cells initiate the production of IL-10, and then recruit bystander T 

cells to perform significant IL-10 synthesis. 
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8 SUBSEQUENT EXPERIMENTS 

Following the completion of the experiments performed for this thesis, the 

same laboratory undertook further experiments to continue this area of 

investigation. Whilst not a part of this thesis, these results are briefly 

presented, where relevant to the final conclusions. 

8.1 Intracellular cytokine production 

To further confirm the T cell origin of the observed IL-10, intracellular cytokine 

staining was performed on polyp cell suspensions from 5 subjects exposed to 

allergen. In these experiments the viable lymphocyte population (R1; Figure 

8.1.1), initially gated on forward and side scatter characteristics, was further 

gated into CD3+ (R2) and CD3- (R3) populations (Figure 8.1.1 i). T cells 

immunoreactive for IL-10 were identified (Figure 8.1.1), albeit in low numbers 

(2 + 0.5 %), and were largely confined to the CD3+ population (Figure 8.1.1ii 

and iii). These cells did not express immunoreactivity for IL-2 (Figure 8.1.1ii ) 

or IL-13 (data not shown).  



8 Subsequent experiments

 88 

 

Figure 8.1.1: Polyp cells were stimulated with allergen for 4 days and immunophenotyed. (i) 

Viable lymphocytes were gated based on size and granularity (R1), and CD3+ (R2) and CD3- 

(R3) cells selected. (ii) CD3+
 and (iii) CD3-

 cells were immunostained for intracellular production 

of IL-10 and IL-2. Figures represent % of total cells immunoreactive for IL-10. A representative 

experiment of 5 is shown. 

These results confirm that, within the lymphocyte population, the observed IL-

10 was found intracellularly, predominantly within T cells. The T cells 

identified were not Th1 or Th2 type cells, as indicated by the low expression 

of IL2 or IL13. These results imply the observed intracellular IL-10 was 

derived from either a regulatory T cell subset, or anergized bystander T cells, 

recruited to produce IL-10 (359). 
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8.2 Composition of nasal polyp cell suspensions 

Flow cytometry was performed to determine the composition of nasal polyp 

cell suspensions. The suspensions contained CD45+ leucocytes (43.3%), 

CD326+ epithelial cells (19.2%) and other cells (Table 8.2.1). 

Table 8.2.1 Phenotypes of nasal polyp cell suspensions 

Cell type Marker Percentagea 

Leucocytes CD45+ 43.3±7.0 

Epithelial cells CD326+ 19.2±3.5 

Other cells CD45- CD326- 18.1±8.0 

aMean ± SEM 

The CD45+ leucocytes were further subdivided into eosinophils, T (CD3+) 

and B (CD19+) lymphocytes, monocytes/macrophages (CD14+) and mast 

cells (CD117+) (Table 8.2.2). 
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Table 8.2.2 Phenotypes of leucocyte subsets in nasal polyp cell suspensions 

Cell type Marker Percentagea 

Eosinophils CD45+ CD16- CD14int 

side scatterhi 

44.2±4.1 

T lymphocytes CD45+ CD3+ 27.7±3.9 

B Lymphocytes CD45+ CD19+ 8.7±2.4 

Monocytes/ 

Macrophages 

CD45+ CD14+ 9.7±1.5 

Mast Cells CD45+ CD117+ 8.0±2.1 

afrequency within the leucocyte population 

 

The CD3+ T cells were further subdivided into cytotoxic (CD8+) or presumed 

helper (CD8-). CD4 expression was lost during collagenase processing and 

hence could not be directly tested for. CD4 expression was restored on T cells 

following 36 hours of culture (not shown). Natural Treg cells (Foxp3+) 

comprised less than 3% of the T cell population. CD127 (133) has been 

proposed as a marker for non-Treg T cells in the peripheral blood. CD103 is a 

mucosal adhesion marker that may be found on mucosal Treg cells along with 

other cells. A significant percentage of the observed T cells were CD103+, 

possibly representing a discrete regulatory population.  
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Table 8.2.3 Phenotypes of T cells in nasal polyp suspensions 

Cell type Marker Percentagea 

Cytotoxic CD3+ CD8+ 20.2±5.4 

Helper (by exclusion) CD3+ CD8- 78.2±5.4 

Mucosal CD3+ CD103+ 31.6±18.9 

Conventional CD3+ CD127+ 41.3±11.5 

Regulatory (natural) CD3+ Foxp3+ 2.8±0.5 

afrequency within the T cell population 
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9 DISCUSSION 

To date, there has been a conspicuous paucity of data in the literature 

regarding the production and regulation of allergen-induced inflammatory 

cytokines in human respiratory tissue. 

This study represents, to the best of our knowledge, the first evidence of a 

critical functional role for T-cell mediated IL-10 in suppressing the allergen-

specific production of IL-5, and to a lesser extent, IFN-γ, two signature 

cytokines associated with the inflammatory Th2 and Th1 pathways 

respectively, by ex vivo human respiratory mucosal cells derived from nasal 

polyps. 

9.1 Summary of key findings 

Nasal polyp cell suspensions were found to constitutively produce appreciable 

quantities of IL-10, IL-5 and IFN-γ, but not IL-2, IL-4 or TNF-α. 

When stimulated with allergen, nasal polyp cell suspensions produced 

increased quantities of IL-10, but not IL-5, IFN-γ, or a range of other Th1 and 

Th2 cytokines (IL-2, IL-4 and TNF-α). IL-10 production was most significantly 

increased where the allergen used was the same as that the subject was 

sensitised to. When IL-10 was neutralised, there was a marked increase in IL-

5 production, and to a lesser extent, IFN-γ and TNF-α production. 

When T cells were depleted from cell suspensions, there was a marked 

reduction in IL-10 production in response to allergen, indicating that the 

observed IL-10 was largely derived from T cells or via a T cell dependent 

process. 

Subsequent intracellular cytokine staining experiments demonstrated T cells 

immunoreactive for IL-10, but not IL-2 or IL-13, suggesting the observed IL-10 

was derived or initiated from a regulatory T cell subset. 
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9.2 Constitutive production 

Nasal polyp cell suspensions were found to constitutively produce appreciable 

quantities of IL-10, IL-5 and IFN-γ, but not IL-2, IL-4 or TNF-α. 

Similar findings have previously been reported for nasal polyp T cell 

suspensions, with spontaneous production of IL-5 and IFN-γ, but no 

appreciable constitutive production of IL-2 and IL-4, by ELISA at 48 hours 

(343). Evidence of active ex vivo IL-5 and IFN-γ production whilst in 

suspension was demonstrated by the addition of cyclohexamide (a protein 

synthesis inhibitor), which resulted in complete ablation of measured cytokine 

production (343). Intracellular cytokine detection by ELISA at 8 hours, using 

Brefeldin A to accumulate intracellular cytokines, similarly demonstrated 

constitutive IL-5 and IFN-γ in NP T cells (344). RT-PCR of T cells derived 

from nasal polyps demonstrated IFN-γ production and, to a lesser extent, IL-

10 (345) (IL-5 was not measured in this study). 

Constitutive IL-5 production has been demonstrated to be markedly increased 

in NP tissue compared with Inferior turbinate (IT) tissue from non-polyposis 

controls (263, 362). IL-5 mRNA has been found in NP tissue but not in tissue 

from healthy controls (298, 363). IL-5 mRNA has been found to occur 

significantly more often in tissue from the anterior ethmoid (where most nasal 

polyps arise) compared to tissue from the lateral and medial surfaces of the 

middle turbinate (364). 

Constitutive IFN-γ has been reported to be raised in NP compared with 

controls (345, 362). Other studies have found IFN-γ production to be not 

significantly different compared to controls (263). Some of the differences 

observed may relate to the atopic status of the test subjects. 

Constitutive IL-5 and IFN-γ production has been demonstrated to be 

increased in T cells derived from nasal polyps compared to peripheral blood 

lymphocytes  (343, 344). 

Constitutive IL-10 production has been demonstrated to be present in tissue 

from patients with NP but decreased compared to controls (362). 
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We did not expect to see significant constitutive IL-2 or IL-4 production by 

CBA in nasal polyp cell suspensions as these cytokines are tightly regulated 

and rapidly internalised following expression. 

The overall results for constitutive cytokine production confirmed the viability 

of our model.  

9.3 Potential for cytokine production 

To determine the functional capacity of T cells in nasal polyp cell suspensions 

to produce the cytokines under investigation, we added anti CD3/CD28 mAbs 

and found marked increases in production of IL-10, IL-5 and IFN-γ. 

Furthermore, IL-2, IL-4 and TNF-α, which were not constitutively detected in 

significant amounts, were all produced in measurable quantities with the 

addition of anti CD3/CD28 mAbs (Figure 7.5.1). This confirmed the presence 

of functioning T cells, capable of cytokine production, within our model.  

Sanchez-Segura et al similarly added anti CD3/CD28 Abs to their NP T cell 

model to demonstrate a 5-fold and 60-fold increase in IL-5 and IFN-γ 

production, respectively (343). These results were of a similar order-of-

magnitude to our own. 

9.4 Significance of constitutive cytokines observed 

The observed active constitutive production of IL-10, IL-5 and IFN-γ is 

suggestive of abnormal continuous T cell activation, resulting in a mixed Th1/ 

Th2 response. 

NP T cells have been shown to express the T cell activation markers CD69, 

DR and CD54, whereas peripheral blood T cells from the same patients do 

not (343). These markers are associated with T cells in a special activation 

state typically associated with T cell accumulation at sites of chronic 

inflammation in conditions such as rheumatoid arthritis (365), inflammatory 

bowel disease (366), and Hashimoto’s and Grave’s thyroid diseases (367).  
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NP has been associated with Staphylococcus aureus (SA) colonisation, with 

NP patients demonstrated to have increased SA colonisation rates of the 

middle meatus, compared to controls (327). Staphylococcus aureus 

entertoxins (SAE) are expressed by SA and have superantigen activity. 

Superantigens have the capacity to cross link MHC class II on APCs and the 

TCR β-chain variable region on T cells, thereby activating T cells outside the 

conventional antigen-specific pathway (368). In this manner, up to 20-25% of 

T cells may be polyclonally activated (369). SAE-related polyclonal T cell 

activation in NP tissue results in Th2 and Th1 cytokine production, including 

IL-5 and IFN-γ (370). Such cytokine production, particularly IL-5, is thought to 

lead to eosinophilic inflammation and local production of IgE, including local 

polyclonal IgE production (370). This mechanism may explain the observed 

constitutive cytokine profile in some NP patients. However, not all NP patients 

demonstrate SA colonisation or polyclonal IgE production, suggesting that 

other mechanisms may play a role in other NP phenotypes. 

Our results are consistent with a state of abnormal continuous T cell 

activation, resulting in a mixed Th1/ Th2 response. 

9.5 Source of constitutive cytokines 

9.5.1 IL-10 

IL-10 is known to be produced particularly by Treg cells, but also by Th0, Th1, 

Th2 cells, B cells, DCs, macrophages, mast cells, monocytes and 

keratinocytes (187, 188). 

CD4+CD25+ Treg cells have been demonstrated to anergize CD4+CD25- T 

cells by direct contact (359). Such anergized T cells may then be recruited to 

produce IL-10 and suppress CD4+ cells in an IL-10 dependent manner (359). 

This suggests that Treg cells initiate the production of IL-10, and then recruit 

bystander T cells to perform significant IL-10 synthesis. 

In humans, the anti-inflammatory production of IL-10 has been studied most 

extensively in allergen specific immunotherapy (SIT). During successful SIT, 
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IL-10 has been demonstrated to initially increase intracellularly in the antigen-

specific Treg cell population, with subsequent appearance in activated CD4+ 

T cells, monocytes and B cells (195). This suggests an autocrine/ paracrine 

action of Treg-cell-derived IL-10 as a key step in the induction of T-cell anergy 

and its subsequent maintenance by IL-10-producing APC and non-specifc 

bystander T cells (118). 

Mast cells have recently been recognised as a potential source of IL-10 in 

some models of allergic contact dermatitis (360). This is thought to occur via 

antigen binding to receptors containing the FcR γ-chain. Whether this is a 

significant source in human airways is yet to be seen (371).  

We hypothesised that the observed IL-10 was derived from T cells, following 

Treg initiation. Subsequent experiments provided support for this hypothesis 

(see 9.8 Source of up-regulated IL-10 and 9.9 T cell origin of observed IL-10). 

9.5.2 IL-5 

In control nasal mucosa, there is little constitutive IL-5 production (264, 289, 

323). By comparison, in NP, IL-5 is uniformly elevated in atopics and non-

atopics (275, 298, 323). 

Whilst T cells, particularly Th2 cells, are recognised as a primary source of IL-

5, in chronic eosinophillic inflammation, eosinophils may contribute, or even 

provide the dominant source (170). In NP, most tissue eosinophils are in an 

activated state (372). In a study of NP T cell phenotypes and intracellular 

cytokine production, it was found that IL-4 was the predominant Th2 cytokine 

found intracellularly in T cells (344). However, IL-5 is consistently measured in 

greater quantities in NP tissue (rather than intracellularly in T cells alone) 

(258, 275, 298, 372), suggesting a non-T cell source of IL-5. In NP, the 

principal source of IL-5 appears to be eosinophils (258, 298, 343, 344). 

9.5.3 IFN-γ 

There are significantly more IFN-γ producing T cells in NP tissue than 

peripheral blood (344). Furthermore, the proportion of both CD4+ and CD8+ T 
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cells in NP tissue producing IFN-γ is significantly greater than the population 

producing IL-5 (344). In NP, the principal source of IFN-γ appears to be T 

cells. 

The observations that IFN-γ producing T cells outnumber those producing IL-

5, and that IFN-γ is principally produced by T cells, whereas IL-5 is principally 

produced by eosinophils, is consistent with our findings that IL-5 is 

constitutively produced in greater quantities from NP cell suspensions than 

IFN-γ, but that T cell stimulation with anti CD3/CD28 mAbs results in markedly 

greater quantities of IFN-γ. 

This view is supported by the finding that RT-PCR of T cells derived from 

nasal polyps results in significantly greater IFN-γ than IL-10 (345).  

9.6 Cytokine response to added allergen 

When stimulated with allergen, nasal polyp cell suspensions did not produce 

increased quantities of the signature Th2 (IL-5, IL-4) or Th1 (IFN-γ, IL-2, TNF-

α) cytokines. In fact, IFN-γ demonstrated a non-significant trend towards 

decreased production (Figure 5.5.5). Furthermore, subgroup analysis of 

atopics and non-atopics failed to show significant variation in cytokine 

production, although there was a non-significant trend towards increased IL-5 

production in atopics. 

These results suggest a regulatory mechanism is in place, limiting the 

inflammatory response to allergen stimulation in NP. 

Furthermore, when stimulated with allergen, nasal polyp cell suspensions 

produced increased quantities of IL-10 in a dose-response fashion (Figure 

3.7.1). The effect was most significant in cells derived from atopic subjects, 

where the subject was sensitised to the added allergen (Figure 3.7.2). 

These results suggest the presence of a population of allergen-specific cells 

within nasal polyp tissue that respond to allergen stimulation with the 

production of IL-10. Cell suspensions from atopic subjects are most likely to 

contain cell populations that are skewed towards the specific allergen to which 
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they are sensitised, and reduced numbers of cells specific to non-sensitised 

allergens. This is borne out by the observed attenuated IL-10 response in 

atopics to non-sensitised allergen (Figure 3.7.2). 

9.7 IL-10 regulation of Th1 and Th2 cytokines 

IL-10 is recognised as the most important anti-inflammatory cytokine in 

humans (373). IL-10 is a potent inhibitor of both Th1 cytokine responses 

including IFN-γ, IL-2 and TNF-α (189) and Th2 cytokine responses, including 

IL-5 and IL-4 (192-194). IL-10 specifically down-regulates the production of 

these cytokines by T cells (192-194). It also reduces the release of pro-

inflammatory cytokines by mast cells (194) and eosinophils (199, 200), 

amongst numerous other functions (see 1.4.3.2 Interleukin 10).  

We hypothesised that the allergen-specific IL-10 response observed was 

inhibiting the allergen-specific production of Th1 and Th2 cytokines. To test 

this hypothesis, we added anti-IL-10 antibodies to polyp cell suspensions and 

measured the cytokine response to added allergen. Neutralisation of IL-10 

resulted in a marked increase in IL-5 production, along with a less significant 

increase in IFN-γ and TNF-α, in response to added allergen.  

This suggests an IL-10 dependent regulatory mechanism that normally 

suppresses abnormal Th2, and to a lesser extent, Th1, responses to allergen 

in nasal polyps.  

This confirms recent in vivo murine experiments demonstrating the critical 

functional role of CD4+CD25+ T cell derived IL-10 in suppressing allergic 

responses within the airway (127-129). 

9.8 Source of up-regulated IL-10 

To further clarify the source of the observed IL-10 we depleted T cells from 

nasal polyp cell suspensions and allergen-specific cytokine production was 

determined. T cell depletion significantly reduced IL-10 production in response 

to allergen, compared to a column control, which was unchanged. This 
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indicated that the observed IL-10 was derived either from T cells or via a T 

cell dependent process. 

This supported our hypothesis that the allergen-specific IL-10 observed was 

produced in T cells following Treg cell initiation.  

Whilst mast cells have recently been recognised as a potential source of IL-10 

in some models of allergic contact dermatitis (360), this mechanism is largely 

T-cell independent and therefore, unlikely to be a major source in the nasal 

polyp cell suspensions studied in our experiments.  

9.9 T cell origin of observed IL-10 

The non-T cell sources of IL-10 (B cells, DCs, macrophages, mast cells, 

monocytes and keratinocytes) still largely require T cell derived cytokines for 

priming, survival and activity (374, 375). It was therefore necessary to 

demonstrate specific T cell production of the observed IL-10. This was 

achieved through intracellular cytokine staining. T cells immunoreactive for IL-

10, but not IL-2 or IL-13 were found, suggesting the observed IL-10 was 

derived from a non-Th1 and non-Th2 T cell subset – most likely regulatory T 

cells or T cells anergized by Tregs (359). 

9.10 T cells in nasal polyposis 

Studies of nasal polyp T cell subsets have found that most NP T cells express 

CD45RO, indicating they are mostly memory T cells (343, 345). NP T cells 

express significantly less TCR, CD3 and CD28, compared to peripheral blood 

T cells, similarly indicating that NP T cells are largely mature memory T cells, 

requiring less antigen-recognition signals and minimal co-stimulation for 

activation to occur (343). 

Other groups have similarly demonstrated differences between T cells derived 

from NP cell suspensions and peripheral blood. Bernstein et al found NP cell 

suspensions had a significantly higher proportion of CD8+ vs CD4+ T cells 

than peripheral blood (344). Other groups have found NP cell suspensions 
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contain significantly more CD8+ and CD4+ cells than mucosal tissue from 

controls (345, 362). 

The adhesion molecule CD103 has been identified as a mucosal homing 

marker on Treg cells, distinguishing Tregs that migrate to mucosal sites of 

inflammation (CD103+) from those that recirculate through the lymphoid 

tissues (376). Our experiments demonstrated a significant minority of CD103+ 

T cells (Table 8.2.3). NP T cells express the adhesion molecule CD103 in 

significantly greater quantities than peripheral blood T cells, indicating a 

subset of NP T cells intended for retention within the nasal mucosa (343). 

Despite demonstrating significant numbers of CD103+ T cells, our 

experiments showed relatively low numbers of Foxp3+ T cells. In contrast to 

the mouse, human CD103+ T cells rarely express Foxp3 (377), implying that 

at least some of these cells may represent a discrete subset of Treg cells that 

are Foxp3-CD103+. 

Foxp3 expression has been shown to be reduced in nasal tissue from 

subjects with CRSwNP compared to CRSsNP and controls (362, 378). Van 

Bruaene et al concluded that NP may be a consequence of defective Treg 

suppressive function (378). However, in the same study, IL-10 levels by 

mRNA, were shown to be similar in nasal tissue from subjects with CRSwNP 

and CRSsNP. This may instead suggest that, in NP, a subset of IL-10 

producing, inducible Foxp3- Tregs my play a more significant suppressive role 

than thymic-derived natural Foxp3+ Tregs. 

By contrast, Li et al found reduced Foxp3 and IL-10 in nasal polyps compared 

with control mucosa (379). Subjects were then treated with intranasal steroids 

(mometasone 50mcg/day) for four weeks. Post-treatment biopsies 

demonstrated increased Foxp3 and IL-10, suggesting that intranasal steroids 

suppress inflammation via an increase in Foxp3+ Treg numbers and/or 

function.  

CD4+CD25+Foxp3+ Treg cells have been found to be increased in NP 

patients with eosinophil-predominant disease compared to neutrophil-

predominant NP patients (380) 
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9.11 Treg/ Th17 balance 

Shen et al investigated the balance between Treg and Th17 cells in NP in the 

tissues and peripheral blood. They found a significant imbalance towards 

Th17 vs Treg in NP in both tissues and blood, that was more marked in 

atopics compared to non-atopics (262). Similar Th17/ Treg imbalances have 

been observed in other chronic inflammatory diseases, including inflammatory 

bowel disease and juvenile arthritis (381, 382). Treg cell presence was found 

to be negatively correlated with Th1 and Th2 cytokines. However, Th17 cells 

were not found to correlate with Th1 and Th2 cytokines (262). The 

significance of these findings to our results is uncertain, particularly as they 

specifically refer to a South-east Asian population, where neutrophil-

predominant NP is more common that the eosinophil-predominant NP 

population of Central London, where our patients were recruited. 

9.12 IgE 

It is well established that tissue IgE levels are raised in NP compared to 

controls, particularly in atopics (258, 323, 362). In atopics with NP there is a 

strong correlation between tissue and serum IgE. In non-atopics with NP, 

tissue IgE is often raised but the correlation with serum IgE is poor (323). 

9.13 Polyclonal IgE 

Staphylococcus aureus enterotoxins (SAE) have been shown to play an 

important role in NP and asthma (276). In a significant subset of NP patients, 

SAE act as a “superantigen”, polyclonally activating T-cells, resulting in 

polyclonal IgE production, high total tissue IgE titres, increased eosinophilic 

inflammation, high ECP concentrations, increased Th2 cytokines, particularly 

IL-5, and Treg inhibition (383). 

There has been some debate over whether this polyclonal IgE is functional 

(384). Recent evidence has demonstrated that specific IgE to grass pollen 

and other allergens within the polyclonal IgE found in NP tissues is functional 

(383).  
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In AR patients, inferior turbinate (IT) tissue IgE and serum IgE are highly 

correlated (383). By contrast, tissue IgE in NP patients is markedly elevated 

compared to serum. In NP patients, mast cell degranulation in response to 

specific allergen correlates with the presence of specific IgE to that allergen in 

the polyclonal IgE within polyp tissue (383). However, specific IgE to that 

particular allergen is often not found in the serum of the same patient (383). 

This capacity of NP polyclonal IgE to react to multiple inhalant allergens may 

act to continuously stimulate mast cells to release immune mediators. 

However, due to the polyclonal nature of NP IgE, mast cell activation and 

mediator release may tend to be in lower quantities, compared with AR, 

leading to continuous low grade chronic inflammation rather than acute 

attacks (383). 

These findings would be consistent with our observed constitutive Th1/ Th2 

cytokine production and potential for allergen-specific cytokine response, 

following neutralisation of IL-10. 

9.14 IgA 

IgA has been demonstrated to be the predominant immunoglobulin present 

constitutively and actively produced in NP tissue in vitro (310), compared to 

peripheral blood, where IgG predominates (385). Blockade of IL-10 and TNF-

α was found to reduce IgA secretion by around 50%, indicating both cytokines 

are critical for nasal polyp plasma cell terminal differentiation (385).  

Interestingly, this study failed to show significant IgE presence or production, 

except in one patient with AR. Unfortunately, all other patients studied were 

non-atopic, limiting the applicability of the results regarding IgE. However, 

these findings do confirm that NP includes several phenotypes, of which not 

all require a significant role for IgE. 

9.15 Mast cells 

Interestingly, investigations into the effect of SAE in NP have demonstrated 

that, whereas S aureus enterotxin B had no effect on mast cells, another 

antigen, surface protein A (SpA), resulted in mast cell cytokine release (370). 
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Mast cells are recognised as inflammatory effector cells of the immune 

system at mucosal surfaces. However, it has recently been recognised that 

mast cells have an additional function in the induction and regulation of the 

immune response (386). Mast cells may influence the T cell response towards 

Th1, Th2 or Th17 (387, 388) and B cell survival, proliferation and IgA 

production (389).  

In addition, recent evidence has come to light demonstrating that, in chronic 

inflammation, mast cells have the capacity to induce IL-10 producing Tregs 

(390). The evidence regarding mast cells and inflammatory regulation in NP is 

yet to be established. Our results indicate immune co-operation may occur 

with mast cells, but that mast cells are not the main source of the cytokines 

observed. 

9.16 Potential limitations of the work and future directions 

In critically self-appraising the methods and data presented, we have 

identified several potential areas of limitation of the work, along with several 

avenues for future investigation. The following is a discussion around these 

areas: 

9.16.1 Method of determining atopy 

For the purposes of this study, we chose to use skin prick testing as the 

primary method for determining atopic status. We chose not to use peripheral 

blood IgE as we felt that the specific in vivo test of clinical responsiveness 

(skin prick testing) is more sensitive than the in vitro test of immunological 

response (serum specific IgE), and therefore more relevant to the 

interpretation of data in this study. 

9.16.2 Non-responders 

5 out of 30 experiments failed to respond with significant cytokine production, 

either constitutively or following allergen stimulation (see Appendix 2 – raw 

data). It is unclear why this occurred. There was no evidence of infection and 
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atopic status was not a significant factor as there were 3 atopics and 2 non-

atopics within the non-responder group. 

9.16.3 Local IgE production 

“Entopy” refers to the mucosal production of specific IgE in the absence of 

serum IgE and with negative skin prick testing (391). This concept remains 

somewhat controversial, but has been proposed as a possible aetiological 

factor in up to 40% of “non-allergic” rhinitis and has been identified in the 

bronchial tissues of both non-atopic and atopic asthmatics (392). 

Unfortunately, useful clinical tests of entopy (nasal challenge testing) are not 

widely available, but could certainly be helpful in further dissecting the data in 

our and similar studies. In particular, the presence of polyclonal IgE in around 

50% of Western NP patients (276) makes the issue of entopy relevant to this 

discussion. 

9.16.4 Cat and grass allergen vs HDM allergen 

The potentially contrasting IL-10 responses seen with HDM allergen, 

compared with cat and grass allergens were intriguing, but the study group in 

that subset was not sufficiently powered to dissect the data to that level. It 

would be interesting to study this specific area further. 

9.16.5 Nasal polyposis phenotypes 

The fact that several NP phenotypes exist, including eosinophil-predominant 

and neutrophil-predominant, along with multiple co-morbidities, including 

aspirin-sensitivity, cystic fibrosis, Churg-Strauss disease and others, 

introduces variables that could distort our data. Ideally, such subgroups would 

be studied independently. However, our supply of experimental tissue was 

determined by the clinical workload of the hospital and, as such, we were 

obliged to process material without regard to phenotype. Sub-group analysis 

of phenotype and co-morbidity would require a significantly greater number of 

subjects. 
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9.16.6 Polyp versus non-polypoid mucosa 

It would be very interesting to continue this line of enquiry with a series of 

experiments assessing allergen-specific cytokine production using inferior 

turbinate tissue in patients with and without AR. In particular, to compare the 

results using both polyp and inferior turbinate tissue harvested from patients 

with both AR and NP. Inferior turbinate tissue is often removed during sino-

nasal surgery and therefore potentially available for research purposes. One 

of the difficulties we encountered is that the yield of cells from small quantities 

of inferior turbinate tissue does not compare to the large number of cells that 

may be isolated from large nasal polyps. 

Evidence is emerging that the inflammatory processes vary significantly 

between different sino-nasal sites, including nasal polyps, the inferior 

turbinate and the middle turbinate (240). Unfortunately, middle turbinate tissue 

is much less frequently removed surgically, making availability of this material 

for research purposes significantly more difficult. 

9.16.7 Non-polyposis controls 

Similarly, it would have been very interesting to study the sino-nasal mucosa 

of non-polyposis control subjects. However, ethical concerns and the volume 

of tissue required limited this potential area of study. 
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10 CONCLUSIONS 

Allergen-specific regulatory T cells play a critical functional role in human 

respiratory tissue derived from nasal polyps by regulating abnormal Th2 and 

Th1 responses to common inhaled aeroallergens, through mechanisms 

dependent on allergen-specific production of IL-10. 
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Appendix 2 – Raw data 

Experiment 1 (NOT USED - ALK DILUENT) 

Atopic (Cat) 

Experiment: Cat allergen with ALK diluent  

Conducted on day 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   
2830.6 9.5 18.8 458.0 6.5 10.4 Control  
3232.6 11.3 21.3 198.7 4.6 7.7 Control  
2097.3 11.6 12.9 185.3 5.0 8.8 0.1 Cat + ALK 
2463.2 12.2 14.9 315.2 6.0 11.0 0.1  
3103.1 10.1 19.0 252.7 4.3 6.9 0.01  
2665.8 10.3 20.1 178.0 4.4 4.5 0.01  
2033.2 7.7 17.9 265.7 3.3   0.001  
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Experiment 2 (NOT USED - ALK DILUENT) 

Atopic (Grass) 

Experiment: Grass allergen with ALK diluent 

Repeated with negative allergen (Cat)  

Conducted on day 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   
1314.5 61.5 14.4 68.3 4.7 22.2 Control  
1642.0 48.1 22.3 111.5 8.6 23.3 Control  
151.7 4.6 4.6 21.8 3.5 19.1 0.1 Grass + ALK 

  4.0 5.6 8.6 4.6 12.3 0.1  
  6.5 5.9 68.6 3.3 24.8 0.01  

17.6 5.2 5.0 57.4 3.2 13.7 0.01  
79.9 3.9 5.9 132.0 3.8 20.5 0.001  

1142.4 9.6 9.0 141.5 4.5 6.5 0.001  
  3.5 23.5 4.0 1.6 4.1 0.1 Cat + ALK 
  4.0 25.9 6.2 1.8 5.1 0.1  

45.7 7.8 56.4 12.1 1.7 9.1 0.01  
  9.5 52.5 13.7 1.6 1.4 0.01  
  6.7 41.1 11.8 1.5 8.3 0.001  

40.4 8.8 60.0 15.9 2.5 3.1 0.001  
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Experiment 3  

Atopic (Cat), Negative response to Grass 

Experiment: Cat allergen with Hanks (HBSS) as diluent vs Cat + ALK diluent  

Grass allergen with ALK diluent  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

180.4 8.4 118.7 44.8 6.6 5.6 Control  
531.4 10.1 134.7 59.1 17.8 29.0 Control  

  15.5 788.2 44.4 24.7 2.6 0.1 Cat + HBSS 
375.2 15.2 778.5 32.8 25.7 2.2 0.1  
119.6 18.7 722.7 34.6 17.0   0.01  

92.5 18.6 676.5 40.5 19.0 4.8 0.01  
156.9 7.7 236.4 34.3 11.9 4.3 0.001  

  10.0 290.4 47.5 10.6 4.4 0.001  
327.9 8.4 93.5 36.6 13.3 6.6 0.0001  
191.9 7.0 101.6 48.2 15.5 6.0 0.0001  

  8.7 137.2 30.7 6.6 5.7 0.1 Cat + ALK 
119.6 12.5 218.7 28.8 14.3 5.7 0.1  
269.3 15.7 489.4 44.4 9.9 3.7 0.01  
113.1 17.9 543.1 67.4 29.2 3.5 0.01  

  7.1 285.5 31.6 14.0 2.9 0.001  
  9.2 397.0 47.7 22.7 4.9 0.001  
  5.2 118.7 39.2 10.7 3.1 0.0001  
312.0 5.6 94.3 49.7 15.1 3.5 0.0001  
208.9 12.4 34.2 27.8 9.6 4.5 0.1 Grass + ALK 
364.8 6.6 19.5 18.7 14.2 3.9 0.1  
966.7 13.4 37.2 35.9 40.6 12.4 0.01  
437.8 11.3 96.1 47.3 19.0 8.5 0.01  
231.1 3.3 35.3 39.4 6.6 4.4 0.001  
285.4 4.0 39.5 35.3 14.0 2.7 0.001  
132.4 3.0 40.5 35.9 12.9 4.9 0.0001  

  2.6 51.6 34.8 8.7 4.5 0.0001  
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Experiment 4 

Non-atopic, Negative response to all allergens 

Experiment: Cat allergen with Hanks (HBSS) as diluent vs Cat + ALK diluent  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   
783.5 21.4 79.3 37.6 37.5 2.6 Control  
280.0 18.7 93.9 35.0 24.7 2.2 Control  
448.2 28.0 547.6 28.0 25.9   0.1 Cat + HBSS 

92.5 19.6 506.0 29.3 10.9   0.01  
92.5 19.8 361.9 31.5 12.4 1.8 0.001  

  13.6 120.9 32.5 7.5 2.9 0.0001  
879.9 14.4 163.9 20.6 16.6 9.9 0.1 Cat + ALK 
531.4 42.4 501.8 35.3 33.5 5.2 0.01  

  19.8 248.9 27.5 12.2 3.4 0.001  
253.0 15.5 109.3 31.6 17.0 6.6 0.0001  
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Experiment 5  

Non atopic, Negative response to cat, grass 

Experiment: Cat allergen with Hanks (HBSS) as diluent vs Cat + ALK diluent  

Grass allergen with ALK diluent  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

741.1 22.3 67.7 22.4 26.2 8.3 Control  
593.9 16.5 49.3 20.3 32.9 5.5 Control  
630.5 31.3 335.5 23.9 25.7 9.4 0.1 Cat + HBSS 
186.2 24.6 295.4 24.5 20.9 4.6 0.01  
751.7 26.4 287.9 21.5 27.1 8.8 0.001  
463.8 19.4 113.9 62.7 14.5 18.1 0.0001  
437.8 23.3 118.7 5.0 15.5 4.3 0.1 Cat + ALK 
630.5 27.4 285.5 10.5 29.2 7.3 0.01  

3202.2 10.3 154.7 59.4 17.4 17.5 0.001  
406.6 13.2 111.4 23.3 18.8 3.4 0.0001  
236.6 13.4 17.2 6.3 5.7 30.7 0.1 Grass + ALK 
106.4 11.6 39.7 13.4 11.6 4.5 0.01  
541.8 10.9 39.9 17.3 11.6 5.4 0.001  
280.0 12.3 52.6 22.0 13.8 2.6 0.0001  
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Experiment 6 

Atopic, Positive response to cat allergen 

Experiment: Cat allergen with Hanks (HBSS) as diluent + anti IL10/ control 

Repeated with negative antigen (grass + ALK diluent) 

Conducted on day 2 and day 6 

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   
175.3 13.7 44.2 10.0 4.4 13.1 Control  
117.5 12.0 42.2 14.1 4.1 10.5 Control  

36.7 44.0 549.9 181.2 8.0 8.8 0.1 Pos antigen (Cat + HBSS) 
(DAY 2) 

32.4 28.8 348.8 135.1 6.2 7.8 0.01  
48.7 17.7 259.7 179.7 5.6 6.8 0.001  
60.1 9.0 73.4 155.7 5.5 14.0 0.0001  

78.3 84.1 5.7 572.9 15.7 30.0 0.1 Pos antigen (Cat + HBSS) + 
anti-IL10 (DAY 2) 

58.3 66.7 4.6 491.7 9.6 16.5 0.01  
49.6 36.5 4.4 487.1 9.5 22.7 0.001  
28.1 20.1 3.9 172.0 4.6 7.0 0.0001  

33.3 28.0 30.0 149.8 5.6 5.1 0.1 Pos antigen (Cat + HBSS) + 
control (DAY 2) 

35.8 29.1 39.5 106.4 4.5   0.01  
  21.5 28.7 121.9 4.1 4.4 0.001  

29.0 8.8 12.9 129.4 3.7 3.0 0.0001  

  12.7 16.7 11.9 1.7 2.7 0.1 Neg antigen (grass + ALK) 
(DAY 2) 

34.1 8.5 23.1 7.5     0.01  
54.8 6.0 4.8 7.7 1.7 5.3 0.001  
30.7 7.4 26.8 13.3   11.9 0.0001  

  24.1 2.8 9.2 1.1   0.1 Neg antigen (grass + ALK)  + 
anti IL 10 (Day2) 

  15.9 3.5 10.0   1.7 0.01  
  12.3 3.3 11.6 1.6 6.4 0.001  

29.0 14.4 3.9 16.8 2.2 5.6 0.0001  

  10.9 3.6 8.1 1.2   0.1 Neg antigen (grass + ALK)  + 
control (DAY 2) 

41.0 6.4 3.4 8.4 1.7 4.7 0.01  
39.3 6.1 4.4 6.8   3.8 0.001  
22.0 6.5 5.0 8.4   4.4 0.0001  

  6.2 17.9 30.0   6.7 Control  
  7.9 20.7 11.2 1.6 7.0 Control  

  11.9 112.7 348.2 3.8   0.1 Pos antigen (Cat + Hanks) 
DAY 6 

22.0 11.0 89.9 451.7 2.6 7.0 0.01  
  8.8 56.1 163.3 2.5 2.5 0.001  
  4.8 18.0 201.3 2.3   0.0001  

20.2 13.9 3.1 1448.2 7.8 3.2 0.1 Pos antigen (Cat + Hanks) + 
anti-IL10 DAY 6 
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26.4 10.5 4.2 1395.6 7.1   0.01  
  7.3   996.6 2.0   0.001  

78.3 6.6 1.9 510.8 4.3 2.7 0.0001  

  12.6 122.9 237.1 4.7   0.1 Pos antigen (Cat + Hanks) + 
control DAY 6 

  11.1 90.7 371.4 4.2 2.0 0.01  
  8.8 63.6 378.3 3.1 4.0 0.001  
  4.0 17.6 258.1 1.9 6.8 0.0001  

  5.5 5.1 13.0     0.1 Neg antigen (grass + ALK) 
DAY 6 

  5.1 11.2 11.2 1.8   0.01  
61.9 7.0 10.7 10.4 2.3 3.4 0.001  
37.5 6.2 14.3 8.1     0.0001  

21.1 6.8 1.2 15.7 1.3 12.5 0.1 Neg antigen (grass + ALK)  + 
anti IL 10 DAY 6 

  6.6 4.6 10.2 2.1 2.3 0.01  
19.3 6.3 3.1 23.7     0.001  

  5.5 1.5 33.0     0.0001  

  7.8 3.6 12.1     0.1 Neg antigen (grass + ALK)  + 
control DAY 6 

  11.3 11.0 9.7 3.2 3.8 0.01  
26.4 3.9 6.5 37.5   5.3 0.001  

  2.8 2.5 7.9     0.0001  
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Experiment 7 

Atopic, Positive response to HDM allergen 

Experiment: HDM allergen with Hanks (HBSS) as diluent + anti IL10/ control 

Repeated with negative antigen (Cat + Hanks diluent)  

Conducted on day 2 and day 6 

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

84.0 8.9 102.3 4.8 1.9 16.4 Control Day 2 
144.1 9.6 60.6 6.1   11.3 Control  
131.0 7.2 112.3 8.0 2.9 8.4 0.1 Pos antigen (HDM + Hanks) 

  6.8 63.8 6.7     0.01  
252.3 6.9 64.7 5.0 1.4 19.7 0.001  
367.0 9.4 65.0 8.7 2.7 38.5 0.0001  

233.3 23.0 7.5 21.5 2.9 19.1 0.1 Pos antigen (HDM + Hanks) + 
anti IL10 

441.6 22.3 4.6 10.2 1.4 21.7 0.01  
215.0 12.5 2.5 7.6 1.6 8.1 0.001  
113.1 16.5 2.7 6.7 2.0 7.7 0.0001  

79.3 9.8 28.5 7.5 2.3 9.2 0.1 Pos antigen (HDM + Hanks) + 
control Ab 

158.9 8.6 18.0 9.4 2.6 19.4 0.01  
60.8 7.2 13.4 4.8 1.8 18.4 0.001  
60.8 10.7 19.4 4.5   53.1 0.0001  

149.4 18.3 127.4 4.9 1.9 10.1 0.1 Neg antigen (Cat + Hanks) 
79.3 18.1 494.4 5.7 3.6 11.4 0.01  

141.4 18.4 406.4 8.0 3.5 7.7 0.001  
100.8 11.8 164.6 4.7 2.4 13.7 0.0001  
487.9 14.3 47.8 8.4 2.4 14.4 Control Day 6 
203.0 8.1 43.3 7.0 2.8 14.5 Control  

751.4 9.4 40.1 18.2   38.9 0.1 Pos antigen (HDM + Hanks) 
Day 6 

263.6 7.4 21.8 6.5 1.8 8.4 0.01  
571.2 4.8 20.5 6.3 2.8 19.0 0.001  
140.1 6.6 25.8 4.3 2.3 15.1 0.0001  

417.3 12.8 4.4 13.2   52.6 0.1 Pos antigen (HDM + Hanks) + 
anti IL10 Day 6 

288.5 10.6 4.0 8.8   8.5 0.01  
216.5 8.6 4.3 18.2 2.5 7.3 0.001  
880.9 11.6 3.3 9.5 3.8 75.6 0.0001  

641.4 15.0 19.0 10.4 2.6 15.1 0.1 Pos antigen (HDM + Hanks) + 
control Ab Day 6 

228.7 6.8 6.1 6.4   4.4 0.01  
312.6 5.5 6.1 4.3   9.6 0.001  
206.0 6.6 9.5 4.7   6.1 0.0001  

102.0 7.7 82.0 9.5 2.9 8.3 0.1 Neg antigen (Cat + Hanks) 
Day 6 

132.3 11.2 118.1 8.7   5.5 0.01  
367.0 19.2 116.1 6.4 1.6 15.1 0.001  



Appendices

 172 

227.2 13.4 49.1 5.7 3.3   0.0001  
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Experiment 8 

Non atopic 

Experiment: HDM allergen with Hanks (HBSS) as diluent + anti IL10/ control 

Conducted on day 2 and day 6 

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   
  13.7 86.3 158.7 3.5 53.1 Control  
  12.2 53.1 142.8 2.9 72.0 Control  

63.1 15.4 197.1 271.9 3.3 58.2 0.1 Neg antigen (HDM + Hanks) 
Day 2 

  15.3 67.3 119.1 2.5 109.0 0.01  
  11.0 77.9 156.6 1.9 70.2 0.001  
113.1 12.7 90.8 99.3 2.8 15.7 0.0001  

1030.1 37.6 6.2 329.4 3.8 114.0 0.1 Neg antigen (HDM + Hanks) + 
anti IL10 Day 2 

247.5 18.5 4.9 236.3   104.2 0.01  
  13.4 3.7 119.1 2.9 29.6 0.001  
  19.6 3.3 176.5 1.8 8.9 0.0001  

58.5 15.6 34.2 121.7 2.0 44.3 0.1 Neg antigen (HDM + Hanks) + 
control Ab Day 2 

  24.0 23.1 164.4 3.9 182.5 0.01  
  16.1 17.3 240.7 2.9 151.8 0.001  

65.4 13.5 24.5 183.0 4.1 128.4 0.0001  
79.3 14.3 54.3 191.4 1.9 40.6 Control  
60.8 11.7 49.9 278.5 4.1 33.5 Control  

91.1 18.3 101.4 279.8 3.0 18.0 0.1 Neg antigen (HDM + Hanks) 
Day 6 

93.5 10.9 36.4 194.9 2.0 22.0 0.01  
  14.5 38.5 253.4 1.4 33.4 0.001  
708.3 31.6 30.0 266.9 3.8 70.5 0.0001  

197.1 14.3 5.0 349.2 1.4 6.3 0.1 Neg antigen (HDM + Hanks) + 
anti IL10 Day 6 

729.7 17.0 2.8 349.2 3.6 16.2 0.01  
501.0 16.0 2.3 461.7   8.7 0.001  
854.0 21.1 4.2 726.0 1.7 10.8 0.0001  

161.7 17.0 82.0 274.5 2.9 19.7 0.1 Neg antigen (HDM + Hanks) + 
control Ab Day 6 

81.6 19.7 15.6 309.3 4.1 68.8 0.01  
352.1 24.2 24.5 443.4 2.1 16.9 0.001  

66.5 17.2 126.9 261.9 2.0 20.7 0.0001  
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Experiment 9 (NOT USED - NON-RESPONDER) 

Non-Atopic  

Experiment: Cat allergen with Hanks (HBSS) as diluent  

All repeated with negative antigen (HDM)  

Conducted on day 6  

No responses 

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

24.2 3.4 2.6 4.9 3.5 15.9 Control Control 
23.6 3.1 2.5 4.2 3.1 26.1 Control Control 
36.5 3.2 3.4 2.6 3.0 20.8 0.1 Neg antigen (HDM)  0.1 
23.0 4.6 2.8 4.3 3.0 23.7 0.001 Neg antigen (HDM)  0.001 
36.5 3.0 3.1 4.3 3.0 14.8 0.1 Neg antigen (Cat)  0.1 
32.4 2.6 3.1 3.1 4.4 21.6 0.001 Neg antigen (Cat)  0.001 
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Experiment 10 (NOT USED - NON-RESPONDER) 

Non atopic 

Experiment: Cat allergen with Hanks (HBSS) as diluent  

Conducted on day 6 

No significant response noted in entire experiment 

Note that this patient had very small amount of tissue with small number of 

cells (4 X 106 total) 

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

201.5 6.8 6.3 3.5 3.4 11.0 Control Control 
218.0 16.0 9.8 5.6 9.2 22.7 Control Control 

56.3 5.2 3.3 3.4 3.2 10.1 0.1 Neg antigen (Cat + Hanks) 0.1 

  4.7 4.8 2.8 3.1 9.2 0.001 0.001 
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Experiment 11 

Non- Atopic  

Experiment: grass allergen with Hanks (HBSS) as diluent  

Conducted on day 2 and 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

43.7 45.4 319.5 32.7 4.2 25.3  Control 
38.6 39.1 296.2 32.0 4.4 26.9  Control 
35.1 35.5 265.5 28.2 3.5 25.3 0.1 Neg antigen  0.1 Day 2 
54.0 33.1 248.2 32.7 5.5 17.2 0.001 Neg antigen  0.001 Day 2 
38.6 18.1 188.7 30.3 4.2 23.7  Control 
37.2 15.2 184.0 12.6 3.2 20.6  Control 
32.4 16.7 149.5 21.5 2.6 16.9 0.1 Neg antigen  0.1 Day 6 
4.9 11.6 123.0 14.0 2.6   0.001 Neg antigen  0.001 Day 6 
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Experiment 12 

Atopic (Grass) 

Experiment: Grass allergen with Hanks (HBSS) as diluent  

All repeated with negative antigen (cat)  

Conducted on day 2 and day 6 

 
IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   
597.1 15.3 425.5 651.4 6.4 23.5 Control Control 
426.6 16.3 361.7 522.2 4.1 24.8 Control Control 

90.3 11.0 398.7 171.8 7.8 34.0 0.1 Pos antigen (Grass) Day 2   
0.1 

481.2 13.7 297.8 204.0 6.1 27.1 0.001 Pos antigen (Grass) Day 2   
0.001 

76.9 14.0 454.2 36.5 7.6 25.7 0.1 Neg antigen (Cat) Day 2   0.1 

233.2 25.9 702.7 53.9 5.2 30.1 0.001 Neg antigen (Cat) Day 2   
0.001 

354.7 20.0 73.7 34.2 24.4 50.9 Control Control 
505.7 13.1 70.0 35.9 3.5 27.5 Control Control 

137.9 7.0 72.4 115.8 5.6 27.9 0.1 Pos antigen (Grass) Day 6   
0.1 

216.5 7.5 70.9 65.9 6.3 40.3 0.001 Pos antigen (Grass) Day 6   
0.001 

66.9 12.1 91.0 13.4 2.4   0.1 Neg antigen (Cat) Day 6   0.1 

91.4 18.8 92.6 27.0 3.8 24.8 0.001 Neg antigen (Cat) Day 6   
0.001 
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Experiment 13 

Atopic (Grass + HDM) 

Experiment: Grass allergen with Hanks (HBSS) as diluent  

Repeated with negative antigen (cat) and HDM allergen (positive) 

Conducted on day 2  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

15.3 6.9 2.4 21.1 3.1 25.7  Control 
35.7 14.7 5.5 36.5 3.3 29.2  Control 
37.6 29.3 21.7 40.6 4.6 22.1 0.1 Pos antigen (Grass) Day 2   0.1 

21.8 1.7       16.4 0.001 Pos antigen (Grass) Day 2   
0.001 

37.6 26.4 21.8 29.8 2.3 27.1 0.1 Pos antigen (HDM) Day 2   0.1 

  10.1 5.0 29.0   24.4 0.001 Pos antigen (HDM) Day 2   
0.001 

  4.9   10.9   22.1 0.1 Neg antigen (Cat) Day 2   0.1 
  5.9 2.4 14.1 3.9 26.6 0.001 Neg antigen (Cat) Day 2   0.001 
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Experiment 14 

Atopic (Grass) 

Experiment: Grass allergen with Hanks (HBSS) as diluent All repeated with 

negative antigen (cat)  

Middle turbinate tissue compared with polyp tissue 

Conducted on day 2 

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

1608.4 37.5 411.9 88.3 3.1    Control 

883.1 40.0 454.2 69.2 5.1 32.2  Control 

610.9 43.8 979.3 75.7 3.2 25.7 0.1 Pos antigen (Grass) Day 2   0.1 

535.2 39.6 679.7 53.4 4.7 16.4 0.001 Pos antigen (Grass) Day 2   
0.001 

2065.9 28.5 343.1 36.8 5.0 33.5 0.1 Neg antigen (Cat) Day 2   0.1 

1458.5 33.2 328.2 40.8 5.5 24.8 0.001 Neg antigen (Cat) Day 2   0.001 

106.4 37.8 228.0 7.3   26.6 0.1 MT Pos antigen (Grass) Day 2   
0.1 

19.7 14.0 102.4 4.9   17.4 0.001 MT Pos antigen (Grass) Day 2   
0.001 

  7.9 36.7 2.9 2.5 16.4 0.1 MT Neg antigen (Cat) Day 2   
0.1 

  8.0 68.8 22.6 4.0 19.3 0.001 MT Neg antigen (Cat) Day 2   
0.001 
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Experiment 15 

Atopic (Grass, HDM, Cat, Dog) 

Experiment: Grass allergen with Hanks (HBSS) as diluent  

All repeated with Cat and HDM antigen  

Conducted on day 6 

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

40.4 5.8 42.7 20.2 4.7 18.0   Control 

36.8 4.2 33.7 11.2 1.7 16.9   Control 

162.4 15.1 166.9 78.4 4.5 15.3 0.1 Pos antigen (Grass)    0.1 

55.7 6.8 83.6 25.6 4.2 11.6 0.001 Pos antigen (Grass)    0.001 

25.7 10.4 15.4 6.1 3.5 24.8 0.1 Pos antigen (Cat)    0.1 

64.5 6.5 79.3 14.3 3.7 22.7 0.001 Pos antigen (Cat)    0.001 

43.0 8.9 205.3 22.0 3.3 16.4 0.1 Pos antigen (HDM)    0.1 

9.0 3.0 36.1 14.2 2.2   0.001 Pos antigen (HDM)    0.001 
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Experiment 16 (NOT USED - NON-RESPONDER) 

Atopic (Grass, HDM) 

Experiment: Grass allergen with Hanks (HBSS) as diluent  

All repeated with Cat and HDM antigen  

Conducted on day 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

  2.4 1.7 1.1 3.1   Control Control 

5.7 3.5 1.5 2.3 2.0 3.5 Control Control 

  5.0   3.7   1.9 0.1 Pos antigen (Grass)    0.1 

  5.0 1.6 3.8 1.1 7.6 0.001 Pos antigen (Grass)    0.001 

  3.3 1.3 1.1   3.8 0.1 Pos antigen (HDM)    0.1 

  2.6 1.6 1.3     0.001 Pos antigen (HDM)    0.001 

4.9 2.9 2.6 2.0 1.3 8.1 0.1 Neg antigen (Cat)    0.1 

  3.8 1.4 1.6   1.9 0.001 Neg antigen (Cat)    0.001 
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Experiment 17 

Atopic (Grass) 

Experiment: Grass allergen with Hanks (HBSS) as diluent  

Repeated using (negative) Cat and HDM antigen 

Conducted on day 6 

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

28.6   33.3 68.9   19.6 Control Control 
33.2   37.3 50.7   24.5 Control Control 
59.3   272.1 830.0     0.1 Pos antigen (Grass)    0.1 
28.0   193.5 528.0     0.001 Pos antigen (Grass)    0.001 
22.0   94.4       0.1 Neg antigen (cat)  .1 
51.6   180.7 63.9     0.001 Neg antigen (cat)  .001 
40.6   227.5 86.2     0.1 Neg antigen (HDM)  .1 
47.6 26.9 519.4 95.3   21.9 0.001 Neg antigen (HDM)  .001 
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Experiment 18 (NOT USED - INFECTED) 

Atopic (Grass) 

Experiment: Grass allergen with Hanks (HBSS) as diluent 

Repeated with negative antigen (cat, HDM)  

Conducted on day 6 

INFECTED - NOT PROCESSED 
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Experiment 19 

Atopic (Grass, HDM) 

Experiment: Grass allergen with Hanks (HBSS) as diluent 

Repeated with addition of anti-IL10 

Repeated using (positive) HDM and (negative) Cat antigen 

Conducted on day 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

8.4 2.3 2.3 4.1 2.9   Control Control 

12.4 3.0 2.8 4.3 2.5 11.0 Control Control 

14.6 10.3 38.7 4.8 3.3 12.0 0.1 Pos antigen (Grass)    0.1 

9.6 4.5 12.8 4.8 2.2   0.001 Pos antigen (Grass)    0.001 

26.2 6.6 4.1 6.0 2.9 16.6 0.001 Pos antigen (Grass)    
0.001+antiIL10 

48.8 7.0 4.2 9.0 4.2 29.5 0.1 Pos antigen (Grass)    0.1 5X 

33.4 5.5 4.5 10.5 3.5 26.5 0.001 Pos antigen (Grass)    0.001 
5X 

28.2 7.0 4.4 7.4 4.1 25.1 0.1 Pos antigen (HDM)    0.1  

19.3 11.2 9.1 7.1 2.5 21.4 0.001 Pos antigen (HDM)    0.001  

17.0 4.1 2.8 6.6 2.1 11.2 0.1 Pos antigen (HDM)    0.1 5X 

11.8 3.1 2.5 6.6 2.2 11.2 0.001 Pos antigen (HDM)    0.001 5X 

18.7 2.7 3.3 4.9 3.1 12.8 0.1 Neg antigen (Cat)    0.1  

23.0 10.3 32.9 5.6 2.8 8.5 0.001 Neg antigen (Cat)    0.001  

10.7 3.4 2.7 6.7 2.6 10.3 0.1 Neg antigen (Cat)    0.1 5X 

95.8 8.1 3.5 11.4 3.3 20.5 0.001 Neg antigen (Cat)     0.001 5X 
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Experiment 20 

Atopic (Grass, HDM, weak + Cat on RAST) 

Experiment: Grass allergen with Hanks (HBSS) as diluent  

Repeated with addition of anti-IL10 + Rat control Ab and + mouse control Ab 

Repeated using (positive) HDM and (negative) Cat antigen 

Conducted on day 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

1076.9 30.1 32.9 101.2 5.7 48.8   Control 

1356.5 26.7 27.9 258.1 5.9 21.9   Control 

110.0 25.1 180.4 151.5 5.2 16.0 0.1 Pos antigen (Grass)    0.1 

350.3 30.7 178.7 222.5 6.8 23.3 0.1 Pos antigen (Grass) +Rat 
anticontrolAb    0.1 

86.6 26.7 178.7 263.0 5.2 23.3 0.1 Pos antigen (Grass) +Mouse 
anticontrolAb    0.1 

862.7 11.3 286.3 410.2 5.3 21.0 0.001 Pos antigen (Grass)    0.001 

1213.4 9.5 260.3 335.8 4.6 6.1 0.001 Pos antigen (Grass) +Rat 
anticontrolAb    0.001 

906.0 9.1 281.2 380.0 5.4 17.0 0.001 Pos antigen (Grass) +Mouse 
anticontrolAb    0.001 

300.2 40.1 5.8 648.8 8.8 26.1 0.1 Pos antigen (Grass)    0.1 +anti 
IL10 

1765.5 14.4 5.9 348.8 5.3 9.5 0.001 Pos antigen (Grass)    
0.001+antiIL10 

207.4 60.6 20.1 488.1 4.7 19.6 0.1 Pos antigen (Grass)    0.1 5X 

213.3 28.7 10.0 302.7 5.5 10.3 0.001 Pos antigen (Grass)    0.001 
5X 

104.9 13.0 22.8 117.8 4.0 16.2 0.1 Pos antigen (HDM)    0.1  

538.7 12.3 46.3 406.3 5.3 11.2 0.001 Pos antigen (HDM)    0.001  

438.1 17.9 11.7 276.8 4.2 16.2 0.1 Pos antigen (HDM)    0.1 5X 

792.6 23.9 56.9 317.3 4.6 16.2 0.001 Pos antigen (HDM)    0.001 5X 

87.2 4.1 4.1 42.1 2.3 10.7 0.1 Neg antigen (Cat)    0.1  

957.8 16.6 37.9 191.2 4.3 10.3 0.001 Neg antigen (Cat)    0.001  

781.5 5.9 4.6 352.1 5.8 12.2 0.1 Neg antigen (Cat)    0.1 5X 

466.1 23.2 65.4 196.5 3.5 12.0 0.001 Neg antigen (Cat)     0.001 5X 
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Experiment 21 (NOT USED - NON-RESPONDER) 

Atopic (Grass) 

Experiment: Grass allergen with Hanks (HBSS) as diluent 

Repeated with addition of anti-IL10 + Rat control Ab and + mouse control Ab 

Repeated using (negative) HDM and (negative) Cat antigen 

Conducted on day 6 

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

13.4 10.5 4.3 9.8 2.5 2.9 Control Control 

7.8 9.7 2.1 11.0 2.3 4.0 Control Control 

5.0 10.7 6.7 10.4 1.7 4.2 0.1 Pos antigen (Grass)    0.1 

4.0 8.3 4.6 8.1 1.1 1.7 0.1 Pos antigen (Grass) +Rat 
anticontrolAb    0.1 

4.0 12.4 5.7 10.3 1.7 4.6 0.1 Pos antigen (Grass) +Mouse 
anticontrolAb    0.1 

2.9 6.7 4.6 9.2 2.4   0.001 Pos antigen (Grass)    0.001 

  5.4 2.1 8.4   4.3 0.001 Pos antigen (Grass) +Rat 
anticontrolAb    0.001 

3.6 6.9 3.8 8.4 1.9 2.1 0.001 Pos antigen (Grass) +Mouse 
anticontrolAb    0.001 

4.0 9.1 1.8 8.8 1.7 2.7 0.1 Pos antigen (Grass)    0.1 +anti 
IL10 

  9.8 4.2 8.2 2.5 4.5 0.001 Pos antigen (Grass)    
0.001+antiIL10 

4.3 6.6 1.4 8.4 1.5 2.7 0.1 Neg antigen (HDM)    0.1 

4.5 12.2 2.0 8.9 2.0 2.3 0.001 Neg antigen (HDM)    0.001  

  2.1   6.4   1.2 0.1 Neg antigen (Cat)    0.1  

  6.1 1.6 9.8 1.6 2.7 0.001 Neg antigen (Cat)    0.001  
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Experiment 22 (NOT USED - NON-RESPONDER) 

Atopic (Grass) 

Experiment: Grass allergen with Hanks (HBSS) as diluent + anti IL 10 and + 

Rat control Ab and + mouse control Ab 

Repeated using (negative) HDM and (negative) Cat antigen 

Conducted on day 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

  2.9 1.2 15.2     Control Control 

  3.9 1.7 12.5     Control Control 

  10.0 6.0 13.4     0.1 Pos antigen (Grass)    0.1 

  17.2 3.5 12.8     0.1 Pos antigen (Grass) +anti IL10    
0.1 

  14.0 7.5 13.8   2.1 0.1 Pos antigen (Grass) +Rat 
anticontrolAb    0.1 

  15.0 9.6 14.9     0.1 Pos antigen (Grass) +Mouse 
anticontrolAb    0.1 

  7.7 2.3 14.4     0.001 Pos antigen (Grass)    0.001 

  17.0   14.4     0.001 Pos antigen (Grass) +anti IL10    
0.001 

1.9 11.0   12.1     0.001 Pos antigen (Grass) +Rat 
anticontrolAb    0.001 

  11.7 2.2 12.6     0.001 Pos antigen (Grass) +Mouse 
anticontrolAb    0.001 

  10.1 1.4 11.7     0.1 Neg antigen (HDM)    0.1 

  5.7 1.7 13.8     0.001 Neg antigen (HDM)    0.001  

  3.7 2.1 10.7     0.1 Neg antigen (Cat)    0.1  

  6.1 1.4 13.4     0.001 Neg antigen (Cat)    0.001  
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Experiment 23 

Non Atopic  

Experiment: Grass allergen with Hanks (HBSS) as diluent + anti IL 10 and + 

Rat control Ab and + mouse control Ab 

Repeated using (negative) HDM and (negative) Cat antigen 

Conducted on day 6  

IFN-g 
TNF-

a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

  4.2 1.7 98.8     Control Control 

  3.7 1.8 73.0     Control Control 

3.4 25.2 18.5 81.0     0.1 Neg antigen (Grass)    0.1 

3.4 35.7 5.9 82.4   5.4 0.1 Neg antigen (Grass) +anti 
IL10    0.1 

  28.6 7.2 90.6 1.6   0.1 Neg antigen (Grass) +Rat 
anticontrolAb    0.1 

  38.5 54.8 93.0     0.1 Neg antigen (Grass) +Mouse 
anticontrolAb    0.1 

  7.9 18.7 54.0   5.7 0.001 Neg antigen (Grass)    0.001 

  15.9 5.6 57.3   4.4 0.001 Neg antigen (Grass) +anti 
IL10    0.001 

  7.9 12.4 55.9   6.3 0.001 Neg antigen (Grass) +Rat 
anticontrolAb    0.001 

  11.5 51.5 66.4 1.7   0.001 Neg antigen (Grass) +Mouse 
anticontrolAb    0.001 

  15.7 2.2 56.4 1.8   0.1 Neg antigen (HDM)    0.1 

  26.1 140.6 80.3   4.7 0.001 Neg antigen (HDM)    0.001  

  3.7 8.6 42.1   4.7 0.1 Neg antigen (Cat)    0.1  

  4.4 2.5 71.1     0.001 Neg antigen (Cat)    0.001  
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Experiment 24 

Atopic (Grass, Cat, Tree) 

Experiment: Grass allergen with Hanks (HBSS) as diluent and + anti IL 10 

Cat allergen with Hanks (HBSS) as diluent and + anti IL 10   

(negative) HDM 

T cells depleted using MACS column, control without depletion 

Conducted on day 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

4.4 10.1 221.2 335.9 5.4 4.2 Control Control 

6.6 18.3 179.6 391.8 7.1 9.2 Control Control 

37.2 329.5 1460.1 140.9 4.8 2.7 0.1 Pos antigen (Grass)    0.1 

60.6 765.8 9.9 264.2 5.5 3.7 0.1 Pos antigen (Grass) +anti IL10    
0.1 

15.3 20.0 285.6 223.7 3.6 4.0 0.1 Pos antigen (cat)    0.1 

27.4 26.7 4.3 291.8 7.0 5.4 0.1 Pos antigen (cat) +anti IL10    
0.1 

21.1 209.1 1989.3 104.5 4.6 3.5 0.1 Neg antigen (HDM)    0.1 

11.6 25.7 853.6 106.4 3.3 2.7 0.001 Pos antigen (Grass)    0.001 

85.3 41.2 12.2 266.8 4.2 2.6 0.001 Pos antigen (Grass) +anti IL10    
0.001 

5.5 312.8 122.0 29.1 3.2 3.1 0.001 Pos antigen (cat)    0.001 

6.7 602.0 5.0 36.2 2.8 3.4 0.001 Pos antigen (cat) +anti IL10    
0.001 

61.9 34.8 1105.6 256.5 5.1 4.6 0.001 Neg antigen (HDM)    0.001  

11.4 131.2 394.4 41.9 2.7 2.4 0.1 Pos antigen (Grass) T 
depleted    0.1 

5.7 24.5 482.1 24.5 3.4 3.2 0.001 Pos antigen (Grass)  T 
depleted  0.001 

38.9 736.7 2105.0 104.5 3.0 2.3 0.1 Pos antigen (Grass) control    
0.1 

23.8 45.7 1590.5 115.4 3.7 3.7 0.001 Pos antigen (Grass)  control  
0.001 

4.2 11.1 70.9 4.5 3.7 3.1 0.1 Pos antigen (Cat) T depleted    
0.1 

4.7 141.4 45.8 5.9 3.3 2.3 0.001 Pos antigen (Cat)  T depleted  
0.001 

8.4 21.5 484.3 62.9 4.1 2.3 0.1 Pos antigen (Cat) control    0.1 

4.5 568.4 343.3 36.3 2.7 3.2 0.001 Pos antigen (Cat)  control  
0.001 

4.0 140.0 457.9 28.0 3.1 2.3 0.1 Neg antigen (HDM) T 
depleted    0.1 
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5.8 22.6 457.9 12.4 3.0 2.3 0.001 Neg antigen (HDM)  T 
depleted  0.001 

20.5 695.3 2105.0 124.0 2.9 2.5 0.1 Neg antigen (HDM) control    
0.1 

13.5 55.9 2105.0 163.5 3.8 2.9 0.001 Neg antigen (HDM)  control  
0.001 
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Experiment 25 

Non - Atopic  

Experiment: Grass allergen with Hanks (HBSS) as diluent and + anti IL 10 

Repeated with cat and HDM + anti IL 10 

Conducted on day 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

41.7 45.1 82.2 361.3 5.2 23.4  Control 

46.6 26.4 64.7 204.0 4.8 29.2  Control 

31.5 28.4 362.4 159.2 5.9 12.6 0.1 Neg antigen (Grass)    0.1 

108.0 21.2 8.0 880.3 5.4 31.9 0.1 Neg antigen (Grass) +anti IL10    
0.1 

15.8 19.8 222.9 49.3 5.9 13.3 0.1 Neg antigen (cat)    0.1 

23.1 28.4 6.8 75.7 4.5 10.7 0.1 Neg antigen (cat) +anti IL10    
0.1 

94.9 17.5 216.4 178.3 3.4 8.5 0.1 Neg antigen (HDM)    0.1 

321.0 53.2 7.6 1000.4 6.0 9.5 0.1 Neg antigen (HDM) +anti IL10    
0.1 

40.1 179.0 132.1 99.6 4.4 10.7 0.001 Neg antigen (Grass)    0.001 

795.4 42.6 7.5 1204.3 3.0 18.8 0.001 Neg antigen (Grass) +anti IL10    
0.001 

16.9 25.6 136.7 103.0 5.0 12.6 0.001 Neg antigen (cat)    0.001 

23.3 81.9 3.1 215.8 3.5 3.9 0.001 Neg antigen (cat) +anti IL10    
0.001 

96.9 26.2 556.6 138.1 4.6 8.8 0.001 Neg antigen (HDM)    0.001 

371.9 36.9 8.5 902.8 6.6 20.4 0.001 Neg antigen (HDM) +anti IL10    
0.001 
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Experiment 26 

Atopic (Cat, tree) 

Experiment: Cat allergen with Hanks (HBSS) as diluent and + anti IL 10 

Grass and HDM 

Conducted on day 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

18.9 7.9 3.4 11.1 4.4 12.6  Control 

14.6 4.4 3.2 11.0 4.2 8.1  Control 

28.5 6.8 4.3 7.6 7.0 9.5 0.1 Pos antigen (Cat)    0.1 

23.9 7.1 3.4 7.1 6.9 9.9 0.1 Pos antigen (Cat) +anti IL10    
0.1 

16.9 13.5 3.1 10.8 6.3 9.1 0.1 Neg antigen (Grass)    0.1 

25.3 8.7 5.3 12.1 5.0 12.0 0.1 Neg antigen (HDM)    0.1 

78.5 18.7 126.6 24.4 3.4 16.2 0.001 Pos antigen (Cat)    0.001 

27.6 29.5   32.6 4.3 9.7 0.001 Pos antigen (Cat) +anti IL10    
0.001 

16.6 21.8 2.9 14.8 4.4 11.3 0.001 Neg antigen (Grass)    0.001 

10.6 27.9 300.8 16.6 4.6 9.1 0.001 Neg antigen (HDM)    0.001 
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Experiment 27 

Atopic (Cat, HDM) 

Experiment: HDM allergen with Hanks (HBSS) as diluent and + anti IL 10 

Repeated with Cat and grass alone 

Conducted on day 6  

Round bottom plate used as flat bottom plates ran out 

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

19.7 7.8 5.7 22.4 6.2 10.8  Control 

19.7 8.2 3.2 23.5 7.2 14.7  Control 

28.5 11.0 8.0 20.4 10.3 13.3 0.1 Pos antigen (HDM)    0.1 

17.2 8.9 5.4 17.6 6.5 12.6 0.1 Pos antigen (HDM) +anti IL10    
0.1 

30.9 9.6 6.3 10.2 10.4 19.0 0.1 Pos antigen (cat)    0.1 

27.9 7.8 5.0 7.7 6.7 11.1 0.1 Pos antigen (cat) +anti IL10    
0.1 

32.7 10.5 5.4 10.5 8.0 15.9 0.1 Neg antigen (Grass)    0.1 

31.2 9.1 8.0 21.8 6.6 10.8 0.001 Pos antigen (HDM)    0.001 

41.0 11.6 8.5 20.9 11.3 21.1 0.001 Pos antigen (HDM) +anti IL10    
0.001 

33.9 9.5 4.5 15.6 7.0 15.2 0.001 Pos antigen (cat)    0.001 

33.9 9.4 5.2 17.6 8.2 10.8 0.001 Pos antigen (cat) +anti IL10    
0.001 

38.2 16.0 7.5 16.3 12.3 17.4 0.001 Neg antigen (Grass)    0.001 
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Experiment 28 

Non - Atopic  

Experiment: HDM allergen with Hanks (HBSS) as diluent and + anti IL 10 

Repeated with cat and grass 

T cells depleted using MACS column, control without depletion 

Conducted on day 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

54.2 50.5 306.1 47.0 6.2 9.9  Control 

101.8 52.9 204.7 39.5 5.2 12.0  Control 

26.8 52.4 304.8 37.9 3.2 9.7 0.1 Neg antigen (HDM)    0.1 

116.6 47.5 6.9 83.2 4.2 9.7 0.1 Neg antigen (HDM) +anti IL10    
0.1 

27.1 20.3 95.3 22.4 5.3 11.6 0.1 Neg antigen (cat)    0.1 

1036.6 30.4 4.7 35.6 5.0 12.3 0.1 Neg antigen (cat) +anti IL10    
0.1 

14.4 27.0 286.9 46.6 4.3 2.7 0.1 Neg antigen (Grass)    0.1 

88.3 38.3 8.0 119.6 5.5 10.2 0.1 Neg antigen (Grass) +anti IL10    
0.1 

  37.1 231.6 38.9 2.9 13.0 0.001 Neg antigen (HDM)    0.001 

93.0 35.8 7.1 67.0 4.4 10.5 0.001 Neg antigen (HDM) +anti IL10    
0.001 

11.5 25.6 172.7 34.2 5.7 11.4 0.001 Neg antigen (cat)    0.001 

63.1 28.1 6.3 47.0 1.9 10.1 0.001 Neg antigen (cat) +anti IL10    
0.001 

50.7 38.7 277.2 57.9 6.1 6.9 0.001 Neg antigen (Grass)    0.001 

1086.7 81.9 6.5 140.5 5.0 6.9 0.001 Neg antigen (Grass) +anti IL10    
0.001 

3.0 10.1 98.3 29.9 3.5 13.9  Control T dep 

11.2 10.2 90.5 15.1 7.5 9.7  Control T dep 

18.9 17.0 347.0 39.0 2.7 10.8 0.1 HDM 0.1 T dep 

  8.3 39.5 5.0 3.3 6.5 0.001 HDM 0.001 T dep 

14.9 21.5 201.3 28.9 5.0 10.2 0.1 Cat 0.1 T dep 

8.4 12.5 128.8 12.0 2.1 9.4 0.001 Cat 0.001 T dep 

13.2 11.3 65.9 34.5 3.1 12.5 0.1 Grass 0.1 T dep 

36.3 33.1 241.7 41.7 6.6 14.1 0.001 Grass 0.001 T dep 

13.2 10.1 97.0 17.3 3.4 8.5  Control Column alone 

12.1 12.4 117.2 24.1 2.3 9.1  Control Column alone 
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25.1 18.4 459.4 36.2 4.4 4.2 0.1 HDM 0.1 Column alone 

8.4 9.5 83.7 25.4 3.6 13.3 0.001 HDM 0.001 Column alone 

6.2 18.3 323.8 27.6 3.7 6.8 0.1 Cat 0.1 Column alone 

16.1 24.7 443.4 28.3 3.5 2.0 0.001 Cat 0.001 Column alone 

12.6 13.1 110.4 18.3 4.5 5.8 0.1 Grass 0.1 Column alone 

70.2 31.5 299.6 48.5 6.2 10.2 0.001 Grass 0.001 Column alone 
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Experiment 29 

Atopic (Grass, HDM)  

Experiment: HDM allergen with Hanks (HBSS) as diluent and + anti IL 10 

Repeated with cat and grass (anti IL10 not used with grass) 

T cells depleted using MACS column 

Conducted on day 6  

Large variance in controls (tubes 1 and 2) - additional controls added (tubes 

28 and 29) 

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

15.2 25.7 39.3 52.1 3.3 3.5  Control 

9.0 13.1 4.1 40.6 2.0 5.9  Control 

  25.9 230.8 35.8 1.5 2.7 0.1 Pos antigen (HDM)    0.1 

14.5 58.0 4.2 81.1     0.1 Pos antigen (HDM) +anti IL10    
0.1 

  23.6 2.2 27.1 2.2   0.1 Neg antigen (cat)    0.1 

12.2 23.2   41.9   3.7 0.1 Neg antigen (cat) +anti IL10    
0.1 

10.3 26.3 7.5 37.4   3.9 0.1 Pos antigen (Grass)    0.1 

  16.0 45.3 43.3   4.9 0.001 Pos antigen (HDM)    0.001 

10.3 28.9 3.5 71.2 2.6 4.8 0.001 Pos antigen (HDM) +anti IL10    
0.001 

7.1 14.2 3.1 51.8   4.2 0.001 Neg antigen (cat)    0.001 

4.2 22.4 2.6 69.4     0.001 Neg antigen (cat) +anti IL10    
0.001 

  17.1 1.6 46.5   3.1 0.001 Pos antigen (Grass)    0.001 

  5.9 5.3 8.7   2.9 0.001 Pos antigen (Grass) + Dex    
0.001 

5.0 4.8 6.4 2.5      Control T dep 

  8.6 7.7 2.9   4.1  Control T dep 

  21.1 147.2 3.1   3.1 0.1 HDM 0.1 T dep 

  5.5 10.5 2.4     0.1 Cat 0.1 T dep 

  45.0 80.3 3.6   3.3 0.1 Grass 0.1 T dep 

2.1 7.3 63.6 3.1   6.4 0.001 HDM 0.001 T dep 

  6.5 15.8 2.7   2.4 0.001 Cat 0.001 T dep 

3.3 31.3 54.1 3.9     0.001 Grass 0.001 T dep 
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6.3 15.6 25.3 42.8   2.7  Control 

3.3 10.6 19.8 47.5   5.2  Control 

4.7 25.9 214.5 45.6 1.7   0.1 Pos antigen (HDM)    0.1 

1.3 21.1 185.2 50.8 1.8 2.3 0.1 Pos antigen (HDM)    0.1 

  21.7 159.9 46.7   2.3 0.001 Pos antigen (HDM)    0.001 

4.5 25.3 228.7 49.3   2.7 0.001 Pos antigen (HDM)    0.001 

 



Appendices

 198 

Experiment 30 

Non - Atopic  

Experiment: HDM allergen with Hanks (HBSS) as diluent and + anti IL 10 

Repeated with cat and grass  

T cells depleted using MACS column, with column control 

Conducted on day 6  

IFN-g TNF-a IL-10 IL-5 IL-4 IL-2   
pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml   

  8.0 8.1 140.5   2.3  Control 

6.8 7.3   161.8   2.3  Control 

  10.4 7.5 181.5     0.1 Neg antigen (HDM)    0.1 

5.4 11.4 4.2 285.1   6.0 0.1 Neg antigen (HDM) +anti IL10    
0.1 

  4.6   171.3 2.0   0.1 Neg antigen (cat)    0.1 

4.2 8.3 1.5 415.3 3.2   0.1 Neg antigen (cat) +anti IL10    
0.1 

3.9 6.8   145.8 2.3 2.0 0.1 Neg antigen (Grass)    0.1 

6.3 16.2 1.7 257.1     0.1 Neg antigen (Grass) +anti IL10    
0.1 

6.6 9.3   150.0   4.1 0.001 Neg antigen (HDM)    0.001 

  11.4 3.8 318.3 2.5   0.001 Neg antigen (HDM) +anti IL10    
0.001 

  5.7 1.8 155.0   3.5 0.001 Neg antigen (cat)    0.001 

1.3 6.4 2.8 376.1 1.4   0.001 Neg antigen (cat) +anti IL10    
0.001 

11.6 6.9   174.6 3.5 6.2 0.001 Neg antigen (Grass)    0.001 

7.2 12.1 1.9 246.8   5.1 0.001 Neg antigen (Grass) +anti IL10    
0.001 

3.9 3.9 3.7 3.9 3.2 2.5  Control T dep 

8.4 4.6   3.4   5.0  Control T dep 

2.9 5.6 3.1 3.5   4.6 0.1 HDM 0.1 T dep 

  4.3 3.9 3.7 2.3 4.1 0.1 HDM 0.1 T dep 

9.3 3.4 2.5 3.4 2.3 4.9 0.1 Cat 0.1 T dep 

13.8 3.6 2.2 3.5   3.3 0.1 Cat 0.1 T dep 

  2.4   3.2 1.6   0.1 Grass 0.1 T dep 

4.8 5.7   4.1 3.4 2.0 0.1 Grass 0.1 T dep 

  3.9 2.0 3.2   3.0 0.001 HDM 0.001 T dep 

7.5 5.0 1.7 3.8 2.5 6.0 0.001 HDM 0.001 T dep 
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  2.7 2.3 4.0 3.4 4.0 0.001 Cat 0.001 T dep 

9.2 5.7 2.1 4.0 3.4 3.5 0.001 Cat 0.001 T dep 

4.7 4.7 1.9 3.5 2.8 5.1 0.001 Grass 0.001 T dep 

9.5 5.7 2.4 4.2 2.6   0.001 Grass 0.001 T dep 

109.2 21.0 422.9 775.0 2.0 4.6  Control T Column alone 

304.2 25.3 422.9 737.4   7.6  Control T Column alone 

82.8 14.6 455.3 804.7     0.1 HDM 0.1 T Column alone 

44.2 11.7 447.0 246.8   2.7 0.1 HDM 0.1 T Column alone 

10.3 6.9 81.9 126.9   3.5 0.1 Cat 0.1 T Column alone 

15.2 8.2 46.2 67.1   2.6 0.1 Cat 0.1 T Column alone 

204.3 18.3 282.2 280.7 2.2 7.1 0.1 Grass 0.1 T Column alone 

162.9 21.8 320.9 330.4   5.6 0.1 Grass 0.1 T Column alone 

129.9 14.8 368.3 470.0 2.2 1.7 0.001 HDM 0.001 T Column alone 

209.1 11.1 323.8 660.5   3.4 0.001 HDM 0.001 T Column alone 

94.8 14.5 219.4 310.0 1.7 2.5 0.001 Cat 0.001 T Column alone 

92.7 13.6 204.9 562.2 2.3   0.001 Cat 0.001 T Column alone 

141.7 20.7 303.7 313.3     0.001 Grass 0.001 T Column alone 

84.7 17.7 340.6 621.9 1.4 3.5 0.001 Grass 0.001 T Column alone 

147.5 25.0 667.0 424.7 2.2 2.9  Control 

82.8 23.9 579.6 158.7 4.1 11.4  Control 

105.2 31.6 630.5 291.1 1.4 4.6 0.1 HDM    0.1 

39.9 30.4 598.9 332.2 2.4 3.0 0.1 HDM    0.1 

55.3 22.5 459.5 356.2   5.7 0.001 HDM    0.001 

105.8 31.6 504.1 406.2   3.3 0.001 HDM    0.001 

 

 




